Precision measurements of mirror transitions at the Nuclear Science Laboratory

Maxime Brodeur, University of Notre Dame
Wednesday, Mar 20, 4:10 PM - Nuclear Science Seminar
1200 FRIB Laboratory

Abstract:  Despite its success, the Standard Model (SM) is currently being scrutinized at the energy, intensity and precision frontier. One probing mechanism for new physics is the unitarity test of the Cabibbo-Kobayashi-Maskawa matrix. This test requires a precise and accurate determination of the Vud matrix element, which is currently derived from the ft-value of superallowed weak decays. While superallowed pure Fermi transitions currently allow for the most precise determination of Vud, there is currently a growing interest in obtaining that matrix element from superallowed mixed transitions to test the accuracy of Vud and the calculation of isospin symmetry breaking corrections. In the past few years a research program aimed at solidifying the determination of Vud from mirror transitions was initiated using radioactive ion beams from the Twin Solenoid (TwinSol) separator at the Nuclear Science Laboratory of the University Notre Dame. The first part of the program is centered on precision half-life measurements and the second part aims at measuring the Fermi to Gamow-Teller mixing ratio ρ. Recent half-life measurements and the current development status of an ion trapping system to measure ρ in many mirror decays for the first time will be presented.