

10th Exotic Beam Summer School - EBSS2011 East Lansing, Michigan. 25-30 July, 2011

The nuclear world: the rich variety of natural mesoscopic phenomena

- Predicted: 6000 7000 particle-stable nuclides
- Observed: 2932
- even-even 737; odd-A 1469; odd-odd 726.
- Lightest ${}_{1}^{2}H_{1}$ (deuteron), Heaviest ${}_{118}^{294}(?)_{176}$
- No gamma-rays known 785.
- Largest number of levels known (578) ⁴⁰₂₀Ca₂₀
- Largest number of transitions known 1319 ⁵³₂₅Mn₂₈
- Highest multipolarity of electromagnetic transition E6 in ${}^{53}_{26}$ Fe₂₇, 19/2⁻ (3040 keV) \rightarrow 7/2⁻(g.s.); 2.58 min
- Resut of 100 years of reasearch 182000 citations in Brookhaven database, 4500 new entries per year.

Nuclear Chart

Nuclear Sizes

Barrett and Jackson Nuclear sizes and structure

Nuclear Binding Weizacker mass formula

$$E_B(Z,N) = \alpha_1 A - \alpha_2 A^{2/3} - \alpha_3 \frac{Z(Z-1)}{A^{1/3}} - \alpha_4 \frac{(N-Z)^2}{A} + \Delta$$

Nuclear Shapes

- Origins of nuclear deformation
 - Core polarization
 - Proton-neutron interaction
- Physics of Nuclear rotations
- Nuclear vibrations
- Evidence for nuclear superfluidity

Describing nuclear shapes

Expand nuclear shapes $R(\theta, \phi) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\theta, \phi) \right)$

- $\lambda=0$ Compression
- $\lambda=1$ Center-of-mass translation
- $\lambda=2$ Quadrupole deformation

Hill-Wheeler Parameters

$$\alpha_{22} = \alpha_{2-2} = \beta \sin \gamma / \sqrt{2}$$
$$\alpha_{20} = \beta \cos \gamma$$

From Ring and Schuck, The nuclear many-body problem

Multipole moments

$$\mathcal{M}_{\lambda\mu} \sim \alpha_{\lambda\mu} \qquad \mathcal{M}_{\lambda\mu} = \int d^3 r \rho(\mathbf{r}) r^{\lambda} Y_{\lambda\mu}(\hat{\mathbf{r}})$$
Reduced transition probability $B(E2, J_i \to J_f) = \sum_{\mu, M_f} |\langle J_f M_f | \mathcal{M}_{2\mu} | J_i M_i \rangle|^2$

$$\stackrel{\text{i}}{\int} \mathbf{I} \qquad \mathcal{V} \qquad \text{EM decay rate} \qquad \tau^{-1} \sim B(E\lambda, i \to f) (E_i - E_f)^{2\lambda + 1}$$

$$f \qquad \text{See EM width calculator: http://www.volya.net/}$$

Quadrupole moment

$$\mathcal{Q}(J) = \sqrt{\frac{16\pi}{5}} \langle JJ | \mathcal{M}_{20} | JJ \rangle$$

Note that:

$$\sqrt{\frac{16\pi}{5}}r^2Y_{20} = 3z^2 - r^2$$

Oblate Q<0

warning: lab frame and body-fixed are different

Quantum Mechanics of Rotations

Body-fixed frame Laboratory frame Angular $J_k k=x,y,z$ I_{k} k=1,2,3 Momentum Shape: $\mathcal{Q}(J)$ QМ Note that J^2 and all I_k are scalars **Collective Rotor Hamiltonian** $H_{rot} = \sum A_i I_i^2$ i = 123

Three parameters A_1, A_2, A_3

$$A_k = \frac{1}{2\mathcal{L}_k}$$

From A. Bohr and B. R. Mottelson. *Nuclear structure*, volume 2

Rotational Spectrum

Spherical $A_1 = A_2 = A_3$ Rotations are not possible

Axially symmetric rotor

$$A_1 = A_2 = A \neq A_3$$
 $H_{\rm rot} = AJ^2 + (A_3 - A)K^2$

Properties:

- -Band structures E~J(J+1)
- -Band head J=K
- -K good quantum number (transitions etc)

Energy level diagram for 166Er. From W.D. Kulp et. al, Phys. Rev. C 73, 014308 (2006).

Rotation and gamma rays

Observed reduced rates and moments

Alaga rules

$$Q(J) = Q C_{20,JJ}^{JJ} C_{20,JK}^{JK}$$
$$Q(0^{+}) = 0, \ Q(2_{1}^{+}) = -\frac{2}{7}Q \dots$$
$$B(E2, J_{i} \to J_{f}) = \frac{5}{16\pi}Q^{2} \left| C_{20,J_{i}K}^{J_{f}K} \right|^{2}$$

$$\frac{\mathcal{Q}^2(2_1^+)}{B(E2,0^+ \to 2^+)} = \frac{16\pi}{5} \left(\frac{2}{7}\right)^2 \approx 0.82$$

Triaxial rotor

Spectrum and states

Three different parameters A_1, A_2, A_3 K is mixed (diagonalize H)

Mixed Transitions

See also: J. M. Allmond, et.al. Phys. Rev. C 78, 014302 (2008).

Examining Triaxiality Parameters

H_{rot} **parameters** A_1, A_2, A_3 instead we use:

1.) Overall energy scale

3.) Energy ratio of E(2₁) and E(2₂) $\gamma_{\rm DF}^2 \approx \frac{E(2_1)}{2E(2_2)}$ Shape parameters: $\beta \gamma$ define \mathcal{M} .

how to measure?

$$\tan^2(\gamma - \Gamma) = \frac{B(E2, 0 \to 2_2)}{B(E2, 0 \to 2_1)} \quad \tan^2(\gamma + 2\Gamma) = \frac{2B(E2, 2_1 \to 2_2)}{7Q^2(2_1)}$$

See also: J. M. Allmond, et.al. Phys. Rev. C 78, 014302 (2008).

Models for moments of inertia

Relationship between H_{rot} and $\beta \gamma$ is model-dependent.

Surface vibrations

$$R(heta,\phi) = R_0 \left(1 + \sum_{\lambda=0}^{\infty} \sum_{\mu=-\lambda}^{\lambda} lpha_{\lambda\mu}^* Y_{\lambda\mu}(heta,\phi)
ight)$$

Collective Hamiltonian

Quantized Hamiltonian

$$H_{\rm vib} = \frac{1}{2} \sum_{\lambda\mu} \left(B_{\lambda} |\dot{\alpha}_{\lambda\mu}|^2 + C_{\lambda} |\alpha_{\lambda\mu}|^2 \right)$$
$$H_{\rm vib} = \sum_{\lambda\mu} \hbar \omega_{\lambda} \left(b^{\dagger}_{\lambda\mu} b_{\lambda\mu} + \frac{1}{2} \right)$$
$$\alpha_{\lambda\mu} = \sqrt{\frac{\hbar}{2B_{\lambda}\omega_{\lambda}}} \left(b^{\dagger}_{\lambda\mu} + (-1)^{\mu} b_{\lambda-\mu} \right)$$

spectrum

Transitions

$$\mathcal{M}_{\lambda\mu} \sim \alpha_{\lambda\mu} \qquad B(E\lambda) \sim \frac{1}{\omega_{\lambda}}$$

systematics

$$E_{2_1^+}B(E2, 2_1^+ \to 0^+) \approx 25 \frac{Z^2}{A} (\text{MeV}e^2 \text{fm}^4)$$

Bosonic enhancement

$$\sum_{J_f} B(E2, J_i \to J_f) = nB(E2, 2_1 \to 0_{gs})$$

Note: Giant resonances

n=3-----0,2,3,4,6

n=2-----0,2,4

_____0

n=1-----2

Quadrupole Vibrations¹¹⁸Cd

From S. Wong, Introductory nuclear physics

Transition to deformation, soft mode

$$H = \frac{\Lambda^{(0\,2)}\pi^2}{2} + \frac{\Lambda^{(2\,0)}}{2}\alpha^2 + \frac{\Lambda^{(3\,0)}}{3}\alpha^3 + \frac{\Lambda^{(1\,2)}}{4}[\alpha, \pi^2]_+ + \frac{\Lambda^{(4\,0)}}{RPA, anharmonic solution, exact solution}$$
Lowering
$$I_{\text{Lowering}}$$

Low-lying Collective modes

Single-Particle Motion

- Evidence of shell structure
- Single-particle modes and magic numbers
- Shells and supershells
- Classical periodic orbits
- Shells, nuclear surface and deformation

Salt Clusters, transition from small to bulk

Counts/channel [abundance in the beam] (Nal) Na⁺ 364 • Symmetry 665 Surface 171 "Shells" 62 100000 Mass [amu]

T. P.Martin Physics Reports 273 (1966) 199-241

1098

200000

Shell Structure in atoms

From A. Bohr and B.R.Mottleson, Nuclear Structure, vol. 1, p. 191 Benjamin, 1969, New York

Nuclear Magic Numbers, nucleon packaging, stability, abundance of elements

From W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

Woods-Saxon potential

$$H = \frac{\mathbf{p}^2}{2\mu} - \frac{\mathbf{p}^4}{8\mu^3} + V_c(\mathbf{r}) + \frac{1}{4\mu^2} \sigma \cdot [\nabla V_c(\mathbf{r}) \times \mathbf{p}] + \frac{1}{8\mu^2} \nabla^2 V_c(\mathbf{r})$$

Parameterization:

$$R = R_C = R_0 A^{1/3} \quad R_{SO} = R_{0,SO} A^{1/3} \qquad V = V_0 \left(1 \pm \kappa \frac{(N-Z)}{A}\right)$$
$$a = a_{SO} = const \qquad \qquad \tilde{V} = \lambda V_0$$

1

(37

 $7 \rangle$

Single-particle states in potential model

Single-particle states in potential model

Single-particle states in potential model

Woods-Saxon parameterization potential

Nuclear Woods-Saxon solver

http://www.volya.net/ws/

²⁰⁸Pb

Woods-Saxon potential

Woods-Saxon Potential for Shell-Model Calculations, arXiv:0709.3525 [nucl-th]

Investigation of Supershells

Nishioka et. al. Phys. Rev. B **42**, (1990) 9377 R.B. Balian, C. Block Ann. Phys. **69** (1971) 76

Consider WS potential $U(R) = \frac{V_0}{1 + \exp[(R - R_0)/a_0]},$

with parameter values

$$V_0 = -6.0 \text{ eV}$$
,
 $R_0 = r_0 N^{1/3}$, $r_0 = 2.25 \text{ Å}$,
 $a_0 = 0.74 \text{ Å}$.

Assuming flat bottom use momentum

$$k = \frac{1}{\hbar} [2m(E - V_0)]^{1/2}$$

Level density in the Woods-Saxon Potential: N=1000, 2000, and 3000

Supershells

Binding energy, deviation from average

Nishioka et. al. Phys. Rev. B **42**, (1990) 9377 R.B. Balian, C. Block Ann. Phys. **69** (1971) 76

Supershells and classical periodic orbits

I. Hamamoto and B. R. Mottelson, Phys. Rev. C 79, 034317 (2009)
Evolution of shells

- Melting of shell structure
- Shells in deformed nuclei
- Shells in weakly bound nuclei
- Is the mean field concept valid?

Single-nucleon motion in deformed potential

Nilsson Hamiltonian: Anisotropic Harmonic oscillator Hamiltonian

Deformation and shell gaps

Shell structure in extreme limits

Melting of shell structure

T=0 and T=0.4 ev, Frauendorf S, Pahskevich VV. *NATO ASI Ser. E: Appl. Sci.*, ed. TP Martin, 313:201. Kluwer (1996)

Single-particle decay

- Decay rate and width
- Potential size
- Single-particle structure and decay from deformed nucleus
- Decay and recoil.

Single-particle decay

$$\begin{array}{ll} \text{Coordinate wave function} & Y_{lm} \frac{u_l(r)}{r} \\ \text{Radial equation to solve } \left\{ -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + 2\mu[v(r) + \alpha \frac{Zz}{r}] \right\} u_l(r) = k^2 u_l(r) \\ u_l(r) = \cos(\delta_l) F_l(r) + \sin(\delta_l) G_l(r) & O_l^{\pm}(r) = G_l(r) \pm i F_l(r) \\ \text{Consider an "almost" stationary state} & \lim_{r \to \infty} u(r) = \mathcal{N}O^+(kr) \\ \gamma = \frac{k}{\mu} |\mathcal{N}|^2 \\ \text{Square well of size R gives} \\ \gamma = \frac{2\hbar^2}{\mu R^2} kR \left| \frac{2l-1}{2l+1} \right| T_l \\ \text{Barrier transmission probability} & T_l \approx \left[\frac{kR^l}{(2l-1)!!} \right]^2 \quad \text{coulomb} \quad T = \exp(-2\pi\eta) \\ \end{array}$$

One-body decay realistic one-body potential

	e(MeV)	γ(keV)	R(fm)
⁵ He	0.895	648	4.5*
¹⁷ O	0.941	98	3.8
¹⁹ O	1.540	310	3.9

*⁵He is too broad R=4.5 fm gives max width of 0.6 MeV

Decay width calculation using Woods-Saxon

 $\gamma(\epsilon) \sim \epsilon^{l+1/2}$

Single-particle decay and rotating mean field

Odd-nucleon systems with deformation: particle-rotor model:

Particle decay from deformed proton emitters

single particle motion
deformed mean field
recoil of mean field
Coriolis attenuation

	$\Gamma_0 \left(10^{-20} MeV ight)$		$\Gamma_2/\Gamma_0(\%)$	
	Rotor	RHFB	P+Rotor	RHFB
Experiment	10.9		0.71	
Adiabatic	15.0		0.73	
Coriolis	1.4	5.9	1.8	1.2
Coriolis+pairing	1.7	7.0	1.7	0.3

East Lansing, Michigan. 25-30 July, 2011

Nuclear many-body problem configuration interaction, the shell model

- Applicability and limitations
- Many-body configurations and Hamiltonian
- Example study
- Binding energy, shell evolution and monopole
- Pairing interaction
- Multipole-multipole interaction, emergence of deformation and rotations
- Statistical approach and random matrix theory

Chart of Isotopes

NNPSS: July 9-11, 2007

The Nuclear Shell Model

d_{5/2}

Many-body Hamiltonian

$$H = \sum_{a} \frac{\vec{p}_a^2}{2m} + \sum_{a>b} V_{NN}(r_a - r_b)$$

Mean field and residual interactions

$$H = \sum_{a} \left[\frac{\vec{p}_a^2}{2m} + U(r_a) \right] + \underbrace{\sum_{a>b} V_{NN}(r_a - r_b) - \sum_{a} U(r_a)}_{\text{Residual Interaction}}$$

Residual interactions

- •Residual, depends on mean-fied
- •Depends on truncation of space and basis
- •Not exactly two-body

Shell model interactions

Two-body Hamiltonian in the particle-particle channel:

No-core shell model

bare NN interaction

•Renormalized interactions improve convergence

Traditional shell model

•Simple potential interactions

•Renormalized bare interactions to include core and core excitations

•Phenomenological interactions determined from fits.

Typical shell model study

Shell model codes:

NuShell: <u>http://knollhouse.eu/NuShellX.aspx</u> Antoine: <u>http://sbgat194.in2p3.fr/~theory/antoine/menu.html</u> Redstick: <u>http://www.phys.lsu.edu/faculty/cjohnson/redstick.html</u> CoSMo: <u>http://www.volya.net</u> (click CoSMo) For demonstration we use CoSMo code.

Anatomy of a shell model study

- 1. Identify system, valence space, limitations on many-body states to study (cosmoxml)
- 2. Create a list of many-body states, typically fixed J_z projection T_z , and parity (Xsysmbs)
- 3. Create many-body Hamiltonian (XHH+JJ)
- 4. Diagonalize many-body Hamiltonian using exact, lanczos, davidson or other method (texactev, davidson_file).
- 5. Database eigenstates states and determine their spins (XSHLJT)
- 6. Define other operators and compute various properties
 - Overlaps and spectroscopic factors (SHLSF)
 - Electromagnetic transition rates (SHLEMB)

The simple model

•Single-j level

- Ω =2j+1 single-particle orbitals: m=-j, j-1, ... j
- •Number of nucleons N: $0 \le N \le \Omega$
- •Number of many-body states: $\Omega!/((N!(\Omega-N)!)$
- •Many-body states classified by rotational symmetry: (J,M)

Dynamics

•Rotational invariance and two-body interactions particle-particle pair operator $P_{LM}=(a \ a)_{LM}$ particle-hole pair operator $M_{K\kappa}=(a \ a^{\dagger})_{K\kappa}$

•Hamiltonian
$$H = \sum_{L} V_L \sum_{M} P_{LM}^{\dagger} P_{LM}$$

•Dynamics is fully determined by j+1/2 parameters V_L

5	Spin	ν	Name	Binding
	0	0	⁴⁸ Ca	0
	7/2	1	⁴⁹ Sc	9.626
	0	0	⁵⁰ Ti	21.787
	2	2	1.554	20.233
	4	2	2.675	19.112
	6	2	3.199	18.588
	7/2	1	⁵¹ V	29.851
	5/2	3	0.320	29.531
	3/2	3	0.929	28.922
1	1/2	3	1.609	28.241
	9/2	3	1.813	28.037
1	15/2	3	2.700	27.151
	0	0	⁵² Cr	40.355
	2_1	2*	1.434	38.921
	41	4*	2.370	37.986
	4_{2}	2*	2.768	37.587
	2_2	4*	2.965	37.390
	6	2	3.114	37.241
	5	4	3.616	36.739
	8	4	4.750	35.605
	7/2	1	⁵³ Mn	46.915
	5/2	3	0.378	46.537
	3/2	3	1.290	45.625
1	1/2	3	1.441	45.474
	9/2	3	1.620	45.295
1	15/2	3	2.693	44.222
	0	0	54 Fe	55.769
	2	2	1.408	54.360
	4	2	2.538	53.230
	6	2	2.949	52.819
	7/2	2	⁵⁵ Co	60.833
	0	0	⁵⁶ Ni	67.998

N=28 Isotones, data

3-particles on j=7/2, 28 m>0 states

1-particle J=j=7/2 2 particles J=0,1,2,..7 but Pauli principle J=0,2,4,6 3 particles

Total states 56=8!/(5!3!)

J=15/2,11/2,9/2,7/2,5/2,3/2

m,	m ₂	m	М	
7/2	5/2	3/2	15/2	1
7/2	<u> </u>	1/2	13/2	1
7/2	<u> </u>	-1/2	<u> </u>	<u> </u>
7/2	3/2	1/2	11/2	2
7/2	5/2	-3/2	9/2	
7/2	3/2	-1/2	9/2	
5/2	3/2	1/2	9/2	3
7/2	5/2	-5/2	7/2	
7/2	3/2	-3/2	7/2	
7/2	1/2	-1/2	7/2	
5/2	3/2	-1/2	7/2	4
7/2	5/2	-7/2	5/2	
7/2	3/2	-5/2	5/2	
7/2	1/2	-3/2	5/2	
5/2	3/2	-3/2	5/2	
5/2	1/2	-1/2	5/2	5
7/2	3/2	-7/2	3/2	
7/2	1/2	-5/2	3/2	
7/2	-1/2	-3/2	3/2	
5/2	3/2	-5/2	3/2	
5/2	1/2	-3/2	3/2	
3/2	1/2	-1/2	3/2	6
7/2	1/2	-7/2	1/2	
5/2	3/2	-7/2	1/2	
5/2	1/2	-5/2	1/2	
5/2	-1/2	-3/2	1/2	
5/2	-3/2	-1/2	1/2	
3/2	1/2	-3/2	1/2	6

Consider a constant component "shift" "Shift term" counts number of pairs

$$V_L \to V_L - V_0$$
$$H \to H - \frac{N(N-1)}{2} \tilde{V}_0$$

 $N = \Omega = 2j + 1$ What is needed to fix closed shell ⁵⁶Ni? Fully occupied shell ⁵⁶Ni $\langle \Omega | P_{LM}^{\dagger} P_{LM} | \Omega \rangle = 1$ $E_{^{56}Ni} = 8\epsilon + \sum_{r} V_L(2L+1)$

$$\begin{array}{ll} \text{Monopole term} & \tilde{V}_0 = \frac{\sum_L (2L+1)V_L}{\sum_L (2L+1)} & \sum_L (2L+1) = \frac{\Omega(\Omega-1)}{2} \end{array}$$

$$\begin{array}{ll} \text{Matching binding across the shell gives} & \tilde{V}_0 = 0.3217 \, \text{MeV} \end{array}$$

Matching binding across the shell gives

N=28 isotones Monopole term

Shell evolutions and monopole term

Energy: $E(N) \sim \epsilon N + N(N-1)\tilde{V}_0/2$ $\varepsilon = \partial E/\partial N \sim \epsilon + \tilde{V}_0 N$

Effective single-particle energies

Tensor nucleon-nucleon interaction off-diagonal monopole term

$$\varepsilon_i = \epsilon_i + \sum \tilde{V}_0^{(i,j)} N_j$$

Example from From Otsuka, GXPF1 interaction

N=28 Best fit

Overall spectrum, ordering is well reproduced 31 state only 5 parameters There are discrepancies, p-h symmetry, seniority

Two-body interaction pairing and potential model

Pairing interaction in f7/2 shell nuclei

Pairing interaction in nuclei

Pairing Hamiltonian

- Pairing on degenerate time-conjugate orbitals $|1\rangle \leftrightarrow |\tilde{1}\rangle \quad |\tilde{jm}\rangle = (-1)^{j-m}|j-m\rangle$
- Pair operators $P = (a_1a_1)_{J=0}$ (J=0, T=1)
- Number of unpaired fermions is seniority v
- Unpaired fermions are untouched by H

$$H = \sum_{1} \epsilon_1 N_1 - \sum_{12} G_{12} P_1^{\dagger} P_2$$

Evidence of nuclear superfluidity

Approaching the solution of pairing problem

- Approximate
 - BCS theory
 - HFB+correlations+RPA
 - Iterative techniques
- Exact solution
 - Richardson solution
 - Algebraic methods
 - Direct diagonalization + quasispin symmetry¹

¹A. Volya, B. A. Brown, and V. Zelevinsky, Phys. Lett. B 509, 37 (2001).

Quasispin and exact solution of pairing problem

Algebra of pair operators

Algebra of spin operators

 $[\mathcal{L}_z, \mathcal{L}^+] = \mathcal{L}_z$

 $[\mathcal{L}^+, \mathcal{L}^-] = -2\mathcal{L}_z \qquad \mathcal{L}^+ = \sqrt{\frac{\Omega}{2}}P^\dagger \quad \mathcal{L}^- = \sqrt{\frac{\Omega}{2}}P$

 $\mathcal{L}_z = \frac{N}{2} - \frac{\Omega}{4}$

The pair operators from SU(2) algebra "quasispin"

$$[P, P^{\dagger}] = 1 - \frac{2N}{\Omega}$$

 $[N, P^{\dagger}] = 2P^{\dagger}$

Magnitude of the quasispin, define seniority

$$\mathcal{L} = \frac{\Omega}{4} - \frac{\nu}{2}$$

Hamiltonian

$$H = \epsilon N + V_0 P^{\dagger} P = \epsilon N + V_0 \frac{2}{\Omega} \mathcal{L}^+ \mathcal{L}^-$$
$$E(N,\nu) = \epsilon N + V_0 \frac{N-\nu}{2\Omega} (\Omega - N - \nu + 2)$$

Quasispin and single-particle operators

Single-particle operators are quasispin 1/2 $a^{\dagger}, a \quad \mathcal{L} = 1/2, \mathcal{L}_z = +1/2, -1/2$

Example: Decay and spectroscopic factors

Initial state with N even

$$\nu = 0, \ N \to \mathcal{L} = \frac{\Omega}{4} \mathcal{L}_z = \frac{N}{2} - \frac{\Omega}{4}$$
$$\nu = 1, \ N - 1 \to \mathcal{L}' = \frac{\Omega}{4} - \frac{1}{2} \mathcal{L}'_z = \frac{N}{2} - \frac{1}{2} - \frac{\Omega}{4}$$

7 7

0

Final odd-N state

 $\Gamma = S\gamma$ Decay width of a many-particle state N-dependence and Wigner-Eckard theorer Spectroscopic factor

$$S \sim |\langle I'|a|I \rangle|^2 \sim |C_{1/2-1/2, \mathcal{L}_z}^{\mathcal{L}-1/2, \mathcal{L}_z-1/2}|^2 \sim N$$

Chances to decay are proportional to the number of particles

Quasispin and two-particle operators

Even multopoles (quadrupole momentL=2) are quasivectors $P_{LM}^{\dagger} \sim \left\{ a^{\dagger} a^{\dagger} \right\}_{LM}, \ \mathcal{M}_{LM} \sim (a^{\dagger} a)_{LM}, \ P_{LM} \sim (aa)_{LM}$ $\mathcal{L} = 1, \, \mathcal{L}_z = -1, \, 0, \, 1, \quad L = 0, \, 2, \dots$ Odd-multipoles (magnetic moment L=1 $\mathcal{M}_{LM} \sim (a^{\dagger}a)_{LM}$ 2500 $\mathcal{L} = 0, \ \mathcal{L}_z = 0, \ L = 1, \ 3, \dots$ 2000 [e²fm⁴] 1500 B(E2) **Example:** Experiment 1000 Full Shell Model **Reduced electromagnetic decay rates** EP+mixina 500 $B(E2) \sim \left| C_{10,\mathcal{L}-1\mathcal{L}_z}^{\mathcal{L},\mathcal{L}_z} \right|^2 \sim N(\Omega - N)$ 0 100 104 108 112 116 120 124 128 13; Figure. Models and data for А B(E2) rates across shell A=100-132

Quasispin and exact solution of pairing problem

For many levels each level is associated with a spin

- Operators P_{j}^{\dagger} , P_{j}^{\dagger} and N_{j}^{\dagger} form a SU(2) group $P_{j}^{\dagger} \sim L_{j}^{\dagger}$, $P_{j} \sim L_{j}$, and $N_{j} \sim L_{j}^{z}$
- Quasispin L²_j is a constant of motion, seniority s_i=(2j+1) -2L_i
- States can be classified with set (L_j L_j^z), (s_j, N_j)
- Each s_i is conserved but N_i is not
- Extra conserved quantity simplifies solution. Example: ¹¹⁶Sn: 601,080,390 m-scheme states 272,828 J=0 states

110 s=0 states

Linear algebra with sparse matrices is fast. Deformed basis Nmax~50-60

Generalization to isovector pairing, R₅ group

BCS theory

Trial wave-function

$$|0) = \prod_{\nu} \left(u_{\nu} - v_{\nu} a_{\nu}^{\dagger} \tilde{a}_{\nu}^{\dagger} \right) |0\rangle, \text{ where } \underbrace{|u_{\nu}|^{2}}_{\text{empty}} + \underbrace{|v_{\nu}|^{2}}_{\text{occupied}} = 1$$

Minimization of energy determines

$$|v_{\nu}|^{2} = \frac{1}{2} \left(1 - \frac{\epsilon_{\nu} - \mu}{e_{\nu}} \right), \quad |u_{\nu}|^{2} = \frac{1}{2} \left(1 + \frac{\epsilon_{\nu} - \mu}{e_{\nu}} \right)$$

Gap equation

$$\Delta_{\nu} = \frac{1}{4} \sum_{\nu'} G_{\nu \nu'} \frac{\Delta_{\nu'}}{e_{\nu'}}, \text{ where } e_{\nu} = \sqrt{(\epsilon_{\nu} - \mu)^2 + \Delta_{\nu}^2}$$

Shortcomings of BCS

• Particle number non-conservation

$$|\mathsf{BCS}\rangle = \prod_{\nu(\mathsf{doublets})} \left\{ u_{\nu} - v_{\nu} P_{\nu}^{\dagger} \right\} |0\rangle$$

Phase transition and weak pairing problem

Example $G = G_{\nu\nu'}$, gap eq. $1 = G \sum_{\nu} \frac{1}{2E_{\nu}}$

$$G < G_c$$
 $\Delta = 0$, where $1 = G_c \sum_{\nu} \frac{1}{2\epsilon'_{\nu}}$

• Excited states, pair vibrations

Cooper Instability in mesoscopic system

BCS versus Exact solution

Pairing in Ca isotopes

Low-lying states in paired systems

Exact treatment

- No phase transition and G_{critical}
- Different seniorities do not mix
- Diagonalize for pair vibrations
- BCS treatment

	G <g<sub>critical</g<sub>	G>G _{critical}
Ground state	Hartree-Fock	BCS
Elementary excitations	single-particle excitations E _{s=2} =2 ε	quasiparticle excitation E _{s=2} =2 e
Collective excitations	HF+RPA	HFB+RPA

Multipole-multipole interaction

Hamiltonian operator can be written in multipole-multipole form

$$\begin{split} P_{LM}^{\dagger}P_{LM} &\sim (a_{1}^{\dagger}a_{2}^{\dagger})(a_{3}a_{4}) \sim \delta_{23}a_{1}^{\dagger}a_{4} - \underbrace{(a_{1}^{\dagger}a_{3})(a_{2}^{\dagger}a_{4})}_{\mathcal{M}_{K}^{\dagger},\mathcal{M}_{K},\mathcal{M}_{K}} \\ H &= \epsilon N + \sum_{L=0,2,4,6} V_{L} \sum_{M=-L}^{L} P_{LM}^{\dagger}P_{LM} \\ H &= \epsilon' N + \sum_{K} \tilde{V}_{K} \sum_{\kappa} \mathcal{M}_{K}^{\dagger} \mathcal{M}_{K}, \\ \\ \text{Consider lowest terms K=0,1,2...} \\ \mathcal{M}_{00} &\sim N \\ \mathcal{M}_{1\mu} \sim J_{\mu} \quad \text{(angular momentum)} \\ \mathcal{M}_{1\mu} \sim J_{\mu} \quad \text{(angular momentum)} \\ \mathcal{M}_{2\mu} \quad \text{Quadrupole-quadrupole interaction, lowest non-trivial term} \\ \\ H_{QQ} &= \sum_{\mu} \mathcal{M}_{2\mu}^{\dagger} \mathcal{M}_{2\mu} \\ \mathcal{M}_{2\mu} \quad \begin{array}{c} \text{QQ-Interaction} \\ \cdot \text{Creates deformation} \\ \cdot \text{Leads to rotational featurs} \\ \end{array} \\ \text{5 operators} \quad \mathcal{M}_{2\mu} \quad \text{3 operators} \quad J_{\mu} \quad \text{can be considered forming SU(3)} \\ \text{For a Harmonic oscillator shell the algebra is exact} \\ \end{split}$$

Elliot's mode

SU(3) group g.s. representation

Consider a Cartesian distribution of particles in 3D HO $(n_x n_y n_z)$

Configurations (representations) are labeled $\lambda = n_z - n_x \ \mu = n_x - n_y$

Energy of the QQ hamiltonian $E_{SU(3)} = 4[\lambda^2 + \mu^2 + \lambda\mu + 3(\lambda + \mu)] + 3L(L+1)$ $\overline{\lambda} = \max(\lambda, \mu)$ $\overline{\mu} = \min(\lambda, \mu)$ $K' \ge 0, K' = \overline{\mu}, \overline{\mu} - 2...,$

SU(3) spectrum and transitions are very close to rotational

$$L = \begin{cases} K', K' + 1 \dots K' + \overline{\lambda} & \text{ for } K' > 0\\ \overline{\lambda}, \overline{\lambda - 2} \dots & \text{ for } K' = 0, \end{cases}$$

(0,0,2)	(1,0,1)	(2,0,1)
	(0,1,1)	(1,1,0)
		(0,2,0)

Example ²⁴Mg, 4protons 4 neutrons

For each nucleon (0,0,2)+(1,0,1)=(1,0,3)

Total number of quanta (4,0,12) λ =8, μ =4

Three mixed rotational bands K=4,2,0, for K=0 L=0,2,...8 K=2, L=2,3,...10 K=4, L=4,5,...12 (terminating spin for sd space)

Homework

- Conduct a shell model study of ²⁴Mg using "sd"-valence space and "usd" interaction
- Calculate the B(E2) transition rate between ground state and first excited 2⁺ state. Calculate the lab quadrupole moment of the 2⁺ state. You can use harmonic oscillator wave functions and oscillator length units.
- 3. Compare your results with the rotor prediction (see Alaga rules, lecture 1)

$$\frac{\mathcal{Q}^2(2_1^+)}{B(E2,0^+ \to 2^+)} = \frac{16\pi}{5} \left(\frac{2}{7}\right)^2 \approx 0.82$$

Giant resonances

Consider interacting particle-hole excitations

Dipole collectivity

Figure: Strength function of the isovector dipole operator in ²²O. WBP SM Hamiltonian plus interaction term:

$$V = \kappa |D\rangle \langle D|$$

 $|D\rangle = D|0^+_{\text{g.s.}}\rangle$
 $\kappa = 10, 20, \text{ and } 60$

Statistical approach, quantum chaos

- Nuclei are strongly interacting many-body systems.
- Many-body quantum systems have complex dynamics, similarly to the classical systems such as gases. Statistical approach, quantum chaos.

From N. Bohr, Nature 137, 344 (1936)

Why is this interesting?

- · Detect missing states.
- Test of fundamental symmetries and their violations
- · Help with exact solutions to the many-body problem

Level spacing distribution

From Brody, Rev. Mod. Phys. 53 p 385

Arrows show closely located states

Quantum chaos

Distribution of energy spacing between neighboring states

- Regular motion
 - Analog to integrable systems
 - No level repulsion
 - Poisson distribution P(s)=exp(-s)

- Chaotic ^smotion
 - Classically chaotic
 - Level repulsion
 - GOE (Random Matrix)
 P(s)=s exp(-p s²/4)

Chaotic motion in nuclei

"Cold" (low excitation) rare-earth nuclei High-Energy region, Nuclear Data Ensemble Slow neutron resonant date Haq. et.al. PRL 48, 1086 (1982)

Many-body complexity and distribution of spectroscopic factors

 $|c\rangle$ Channel-vector (normalized)

Reduced width (spectroscopic factor)

$$\gamma_{I}^{c}=\left|\langle I|c
angle
ight|^{2}$$

|I
angle Eigenstate

What is the distribution of the reduced width?

Average width
$$\overline{\gamma} = rac{1}{\Omega} \sum_{I} \gamma_{I}^{c} = rac{\langle c | c
angle}{\Omega}$$
 Amplitude $x_{I} = \sqrt{\gamma_{I}/\overline{\gamma}}$

If any direction in the Ω -dimensional Hilbert space is equivalent

$$P(x_{I_1}, \dots x_{I_\Omega}) \sim \delta\left(\Omega - \sum_I x_I^2\right)$$

Why Porter-Thomas Distribution?

Projection of a randomly oriented vector in Ω -dimensional space

$$P(x) = \frac{V_{\Omega-1}}{\sqrt{\Omega}V_{\Omega}} \left(1 - x^2/\Omega\right)^{(\Omega-3)/2}$$
$$V_{\Omega} = \frac{\Omega \pi^{\Omega/2}}{\Gamma(\Omega/2 + 1)}$$

For large Ω this leads to Gaussian

$$P_G(x) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$P_{\nu}(\gamma) = \frac{1}{\gamma} \left(\frac{\nu\gamma}{2\overline{\gamma}}\right)^{\nu/2} \frac{1}{\Gamma(\nu/2)} \exp\left(-\frac{\nu\gamma}{2\overline{\gamma}}\right)$$

Observation of Porter-Thomas Distribution

Statistical treatment

- Microcanonical $\hat{\rho}(E,N) = \delta(E-\hat{H})\delta(N-\hat{N})$
- Canonical $\hat{\rho}(\beta, N) = \exp(-\beta \hat{H}) \,\delta(N \hat{N})$
- Grand canonical $\hat{\rho}(\beta,\mu) = \exp\left(-\beta(\hat{H}-\mu\hat{N})\right)$ Partition functions

$$Z = \operatorname{Tr}(\widehat{\rho})$$
 and $\widehat{w} = \frac{\rho}{Z}$

Statistical averages

$$\langle \hat{O} \rangle = \frac{\operatorname{Tr}(O\hat{\rho})}{\operatorname{Tr}(\hat{\rho})} = \operatorname{Tr}(\hat{O}\hat{w})$$

Entropy

$$S = -\langle \ln(\hat{w}) \rangle = -\operatorname{Tr}(\hat{w} \ln \hat{w})$$

Temperature as a function of energy in three different statistical ensembles, for picket-fence model with 12 levels and 12 particles and V=1.00. For microcanonical we use σ =1 and 5

Microcanonical ensemble and thermodynamic limit

Pairing phase transition

Florida State University

10th Exotic Beam Summer School - EBSS2011 East Lansing, Michigan. 25-30 July, 2011

Halos and resonances

Resonance phenomenon

decay

Halo phenomenon

Description of resonances and halo

R-interaction range а a-scattering length R $\sigma = \pi a^2$ cross section a>0 and a>>R bound Halo state $\psi(r) \sim e^{-kr} \quad k = \sqrt{\frac{2m\epsilon}{\hbar^2}} \quad a = \frac{\hbar}{\sqrt{2m\epsilon}}$ a<0 and |a|>>R unbound long-lived resonant state $\psi(r) \sim N(t)e^{-kr}$ $N(t) \sim e^{-i\gamma t/2}$

Complex energy

$$\epsilon \to \epsilon - i \frac{\gamma}{2}$$

Nuclear reaction theory Quantum billiards with particle-leaks

 Due to finite lifetime states acquire width (uncertainty in energy decay width)
 Complex Energies!!!

¹¹LI model

Dynamics of two states coupled to a common decay channel

• Mechanism of binding by Hermitian interaction

Solutions with energy-dependent widths

 Energy-independent width is not consistent with definitions of threshold

$$A_2^2 = \gamma_2(E) = \alpha \sqrt{E},$$

$$A_1^2 = \gamma_1(E) = \beta E^{3/2}$$

Squeezing of phase-space volume in s and p waves, Threshold $E_c=0$

Model parameters: ϵ_1 =100, ϵ_2 =200, A_1 =7.1 A_2 =3.1 (red); α =1, β =0.05 (blue) (in units based on keV) Upper panel: Energies with A_1 = A_2 =0 (black)

Bound state in the continuum effect: $\Gamma=0$, above threshold

$$v = A_1 A_2 \frac{\epsilon_1 - \epsilon_2}{\gamma_1 - \gamma_2}$$

Model parameters: $\epsilon_1=100, \epsilon_2=200,$ $A_1=8.1 \quad A_2=12.8 \text{ (red)}; \alpha=15, \beta=0.05 \text{ (blue)}$ (in units based on keV) Upper panel: Energies with $A_1=A_2=0$ (black) and case b (blue)

Bound States in the continuum

von Neumann, J. & Wigner, E. Phys. Z. 30, 465-467 (1929).

Observation: Capasso, et.al. Nature 358, 565 - 567

Level Crossing in two-level system

- Bound states, no level crossing if $v \neq 0$.
- System with decay, energy independent H ^[1]
 X=2Tr(H²)-(Tr(H))²=(E₁-E₂)² determines picture
 - Full level crossing $E_1 = E_2$ if X=0
 - Im(X)=0 partial level crossing, Δ E Δ Γ=0
 If Re(X)<0, energies cross, Δ E=0
 If Re(X)>0, widths cross, Δ Γ=0
- Open system, energy-dependent H(E) more complicated but features are similar
- [1] P. von Brentano and M. Philipp, Phys. Lett B 454 (1999) 171

Interacting resonances

Scattering and cross section near threshold

Cross section near threshold

 ϵ_1 =100, ϵ_2 =200, v=180 (keV) A₁²=0.05 (E)^{3/2}, A₂²=15 (E)^{1/2}

Superradiance, collectivization by decay

Dicke coherent state

N identical two-level atoms coupled via common radiation $-\gamma$

Single atom γ

Coherent state $\Gamma \sim N\gamma$

Volume << λ^3

Analog in nuclei

Interaction via continuum Trapped states) self-organization

g ~ D and few channels
Nuclei far from stability
High level density (states of same symmetry)
Far from thresholds

Single-particle decay in many-body system

Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21

Superradiance in resonant spectra

Narrow resonances and broad suparradiant state in $^{12}\mathrm{C}\Delta$

Bartsch et.al. Eur. Phys. J. A 4, 209 (1999)

Pentaquark as a possible candidate for superradiance

Stepanyan et.al. hep-ex/0307018

Broad 0⁺ alpha state at excitation energy of 9.9 MeV $\alpha \text{+}^{14}\text{C}$

Very broad Γ≈2 MeV 0⁺ state at 3.7+/-0.5 MeV above the α decay threshold was observed -9.9 MeV excitation energy.

E.D. Johnson, et al., EPJA, 42 135 (2009)

From G. Rogachev

Single-particle scattering problem

The same non-Hermitian eigenvalue problem

$$\begin{aligned} hu_l &= \frac{1}{2\mu} \left\{ -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + 2\mu \left[V(r) + \alpha \frac{Zz}{r} \right] \right\} u_l(r) = \epsilon u_l(r), \\ \text{Internal states:} \quad u_l(r) \qquad \qquad \text{width } \sim |a^j(\epsilon)|^2 \\ \text{External states:} \quad \epsilon = \frac{k^2}{2\mu} \\ F_l(r) &= kr j_l(kr) \\ \text{Single-particle decav amplitude} \\ a^j(\epsilon) &= \langle 0|c_j(\epsilon)V b_j^{\dagger}|0 \rangle = \sqrt{\frac{2\mu}{\pi k}} \int_0^\infty dr F_l(r) V(r) u_l(r) \end{aligned}$$

Single particle decay width: (requires definition and solution for resonance energy)

$$\gamma_j(\epsilon) = 2\pi \left| a^j(\epsilon) \right|^2$$

Continuum Shell Model He isotopes

Cross section and structure within the same formalism
Reaction I=1 polarized elastic channel

References

[1] A. Volya and V. Zelevinsky,
Phys. Rev. Lett 94 (2005) 052501.
[2] A. Volya and V. Zelevinsky,
Phys. Rev. C 67 (2003) 54322

Scattering matrix and reactions $\mathbf{T}_{cc'}(E) = \langle A^c(E) | \left(\frac{1}{E - \mathcal{H}(E)} \right) | A^{c'}(E) \rangle$ $\mathbf{S}_{cc'}(E) = \exp(i\xi_c) \left\{ \delta_{cc'} - i \,\mathbf{T}_{cc'}(E) \right\} \exp(i\xi_{c'})$

Cross section:
$$\sigma$$

$$= \frac{\pi}{k'^2} \sum_{cc'} \frac{(2J+1)}{(2s'+1)(2I'+1)} |\mathbf{T}_{cc'}|^2$$

Additional topics:

•Angular (Blatt-Biedenharn) decomposition

•Coulomb cross sections, Coulomb phase shifts, and interference

Phase shifts from remote resonances.

Unitarity and flux conservation

Take:
$$\mathbf{W} = \mathbf{a}\mathbf{a}^{\dagger}$$

Exact relation:

$$egin{aligned} \mathbf{S} &= rac{\mathbf{1} - i/2\,\mathbf{K}}{\mathbf{1} + i/2\,\mathbf{K}} & \mathbf{K} &= \mathbf{a} \ \mathbf{S}\mathbf{S}^\dagger &= \mathbf{S}^\dagger\mathbf{S} &= \mathbf{1} \end{aligned}$$

Cross section has a cusp when inelastic channels open
The cross section is reduced due to loss of flux
The p-wave discontinuity E^{3/2}

⁸B(p,p')⁸B(1⁺)

For an isolated narrow resonance

 $|\langle \alpha | \exp(-i\mathcal{E}_{\alpha}t) | \alpha \rangle| = \exp(-\Gamma_{\alpha}t/2)$

Time dependence of decay, Winter's model

Quasistationary state state $|n\rangle$ $\langle x|n\rangle = \sqrt{2}\sin(n\pi x)$

Continuum of reaction eigenstates $|k\rangle$ $\langle x|k\rangle = A(k) \sin [k(x+1)] + \Theta(x) \frac{G}{k} \sin(k) \sin(kx)$

Time dependent decay

$$A_{nn'}(t) = \langle n | e^{-iHt} | n' \rangle = \int e^{-ik^2 t} \langle n | k \rangle \langle k | n' \rangle dk$$
$$P_{nn'}(t) = |A_{nn'}(t)|^2$$

D. Dicus. at.al. Phys. Rev. A (2002) 65 032116

Potential is formed by an infinite wall and a delta-barrier.

Time-dependent decay, Winter's model

D. Dicus. at.al. Phys. Rev. A (2002) 65 032116

States in ⁸B

Experimental observation of 2⁺, 0^{+,} and 1⁺ states can be done in inelastic reaction

TDCSM: WBP interaction +WS potential, threshold energy adjustment. R-Matrix: WBP spectroscopic factors, R_c =4.5 fm, only 1⁺ 1⁺ 0⁺ 3⁺ and 2⁺ I=1 channels Experimental data from: G.Rogachev, et.al. Phys. Rev. C **64**, 061601(R) (2001).

Resonances and their positions inelastic ⁷Be(p,p')⁷Be reaction in TDCSM

CKI+WS Hamiltonian

See animation at www.volya.net

Position of the 2+ and its role in ⁷Be(p,p)⁷Be

R-matrix fit and TDCSM for ⁷Be(p,p)⁷Be

Chanel Amplitudes from TDCM and final best fit

	J≖	p _{1/2} , I=3/2	p _{3/2} , I=3/2	p _{1/2} , I=1/2	p _{3/2} , I=1/2
FIT	2+	-0.293	0.293		0.534
CKI	2+	-0.168	0.164		0.521
FIT	1+	-0.821	-0.612	0.375	0.175
CKI	1+	-0.840	-0.617	0.332	0.178

The role of internal degrees of freedom in scattering and tunneling

$$\Psi_{-}(r,R) = e^{iK_{0}R}\psi_{0}(r) + \sum_{n=0}^{\infty} C_{-,n}e^{-iK_{n}R}\psi_{n}(r) \qquad \Psi_{+}(r,R) = \sum_{n=0}^{\infty} C_{+,n}e^{-iK_{n}R}\psi_{n}(r)$$
The composite object
$$\underbrace{---\frac{\text{Reflection}}{\text{Incident wave}}}_{V(r) = \frac{1}{2}\mu\omega^{2}r^{2}}$$
Intrinsic Potential:

Reflection from the wall

Composite object $X = \frac{m_1 x_1 + m_2 x_2}{M}$, $x = x_1 - x_2$; $M = m_1 + m_2$, $m = \frac{m_1 m_2}{m_1 + m_2}$ $h = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + v(x)$ $h\psi_n(r) = \epsilon_n \psi_n(r)$, n = 0, 1, 2, ...

Hamiltonian
$$H=-rac{\hbar^2}{2M}rac{\partial^2}{\partial X^2}+V(x_1,x_2)+h$$

$$V(x_2) = \begin{cases} \infty & \text{when } 0 < x_2 \\ 0 & \text{otherwise} \end{cases}$$

Assume that only one of the particles interacts with the potential!

$$V(x_1, x_2) \to V(x_2)$$

Approach to solution

$$\Phi(X,x) = rac{e^{iK_n X}}{\sqrt{|K_n|}} \psi_n(x) + \sum_{m=0}^{\infty} rac{R_{mn}}{\sqrt{|K_m|}} e^{-iK_m X} \psi_m(x),$$

 $\Phi(X,x) = 0 ext{ at } x_2 = 0.$

"HO" model

$$egin{aligned} v(x) &= m \omega^2 x^2/2 \ \psi_n(x) &= rac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n\left(x
ight) \exp\left(-rac{x^2}{2}
ight) \end{aligned}$$

Results: scattering off an infinite wall Well Harmonic oscillator

Center-of-mass penetration probability

Wall is at X=0 Deep penetration for

- -high energy
- -Massive non interactive particle

Resonant tunneling of composite objects

Enhanced tunneling probability for composite objects

A. Lemasson, et.al. PRL 103, 232701 (2009)