Discovery of the Platinum Isotopes

J.L. GROSS and M. THOENNESSEN*

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Thirty-nine platinum isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

* Corresponding author.

Email address: thoennessen@nscl.msu.edu (M. Thoennessen).

CONTENTS

1	Introduct	ion	2			
2	Discover	y of ^{166–204} Pt	2			
3	Summary					
EX	EXPLANATION OF TABLE					
TA	BLE					
	I.	Discovery of Platinum Isotopes	13			
RE	REFERENCES FOR TABLE					

1. INTRODUCTION

The discovery of the platinum isotopes is discussed as part of the series of the discovery of isotopes which began with the cerium isotopes in 2009 [1]. The purpose of this series is to document and summarize the discovery of the isotopes. Guidelines for assigning credit for discovery are (1) clear identification, either through decay curves and relationships to other known isotopes, particle or γ -ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. If the first observation was not confirmed or found erroneous in the subsequent literature, the credit was given to the correct measurement. These cases are specifically mentioned and discussed. Thus the assignment for the more recent papers is subject to confirmation. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the evaluation of nuclear and decay properties of nuclides in their ground and isomeric states NUBASE [2] which is based on the "Evaluated Nuclear Structure Data Files" ENSDF database [3].

2. DISCOVERY OF ^{166–204}PT

Thirty-nine platinum isotopes from A = 166 - 204 have been discovered so far; these include 6 stable, 26 neutron-deficient and 7 neutron-rich isotopes. Many more additional neutron-rich nuclei are predicted to be stable with respect to neutron-emission and could be observed in the future. The mass surface towards the neutron dripline (the delineation where the neutron separation energy is zero) becomes very shallow. Thus the exact prediction of the location of the dripline is difficult and can vary substantially among the different mass models. As one example for a mass model we selected the HFB-14 model which is based on the Hartree-Fock-Bogoliubov method with Skyrme forces and a δ -function

pairing force [4]. According to this model ²⁶¹Pt should be the last odd-even particle stable neutron-rich nucleus while the even-even particle stable neutron-rich nuclei should continue through ²⁶⁴Pt. Along the proton dripline four more isotopes ($^{162-165}$ Pt) are predicted to be particle stable. In addition, it is estimated that 5 additional nuclei beyond the proton dripline could live long enough to be observed [5]. Thus about 68 isotopes have yet to be discovered corresponding to 64% of all possible platinum isotopes.

In 2000, J.W. Arblaster published a review article entitled "The Discoverers of the Platinum Isotopes" [6]. Although he selected slightly different criteria for the discovery, our assignments agree in most of the cases. Since then only two additional isotopes (^{203,204}Pt) were discovered.

Figure A summarizes the year of first discovery for all platinum isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive platinum isotopes were produced using heavy-ion fusion-evaporation reactions (FE), neutron capture reactions (NC), light-particle reactions (LP), spallation (SP), and projectile fragmentation of fission (PF). The stable isotopes were identified using mass spectroscopy (MS) or atomic spectroscopy (AS). Heavy ions are all nuclei with an atomic mass larger than A=4 [7]. Light particles also include neutrons produced by accelerators. In the following, the discovery of each platinum isotope is discussed in detail (See table 1).

^{166–167}**Pt**

^{166–167}Pt was discovered by Bingham et al. in 1996 and published in the paper "Identification of ¹⁶⁶Pt and ¹⁶⁷Pt" [8]. A ⁹²Mo metal foil was bombarded by 357 and 384 MeV ⁷⁸Kr beams at the ATLAS accelerator facility at Argonne National Laboratory. ¹⁶⁶Pt and ¹⁶⁷Pt were produced in fusion evaporation reactions and identified with the FMA fragment mass analyzer. "These two figures demonstrate unambiguously the assignments of the 6832 and 6988 keV peaks to ¹⁶⁸Pt and ¹⁶⁷Pt, respectively. We deduced half-lives of 2.0(4) ms for ¹⁶⁸Pt and 0.7(2) ms for the new isotope, ¹⁶⁷Pt. …we assign the previously unobserved 7110(15)-keV α peak to the new isotope ¹⁶⁶Pt whose half-life was determined to be 0.3(1) ms." The deduced half-lives of 0.3(1) ms for ¹⁶⁶Pt and 0.7(2) ms for ¹⁶⁷Pt are the currently accepted values.

^{168–171}**Pt**

Hofmann et al. first identified ¹⁶⁸Pt, ¹⁶⁹Pt, ¹⁷⁰Pt, and ¹⁷¹Pt in 1981. They published their results in "New Neutron Deficient Isotopes in the Range of Elements Tm to Pt" [9]. A ⁵⁸Ni beam impinged on a tin target at the UNILAC linear accelerator. The α -decay spectra of the evaporation residues were measured after the velocity filter SHIP. "The lighter isotopes down to mass number 169 were identified in correlations to their well established daughters ^{167–165}Os. The lightest isotope, ¹⁶⁸Pt, could be identified by 4 correlated events to the daughter ¹⁶⁴Os." The measured half-lives of 2.5^{+2.5}_{-1.0} ms (¹⁶⁹Pt) and 6⁺⁵₋₂ ms for (¹⁷⁰Pt) are close to the currently accepted values of 7.0(2) ms and 13.8(5) ms, respectively. It should be mentioned that ¹⁷¹Pt was independently observed by Della Negra et al. [10] and submitted less than two month after Hofmann et al.

FIG. A. Platinum isotopes as a function of time when they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the neutron-deficient side the light blue squares correspond to unbound isotopes predicted to have lifetimes larger than $\sim 10^{-9}$ s.

¹⁷²**Pt**

The discovery of ¹⁷²Pt was reported in the 1981 article "Alpha Decay Characteristics of Neutron Deficient Isotopes of Pt Isotopes Produced in ⁶³Cu Induced Reactions on ¹¹²Sn and ¹¹³In Targets" by Della Negra et al. [10]. ¹¹²Sn and ¹¹³In targets were bombarded with 245-300 MeV ⁶³Cu beams from the ALICE accelerator at Orsay. The evaporation residues were transported with a helium jet and deposited onto a metallic surface in front of an annular silicon detector. "¹⁷³Pt is produced in this case by the reaction ¹¹²Sn(⁶³Cu,pn) and the two other curves corresponding to (Cu,p2n) and (Cu,p3n) leading to ¹⁷²Pt and ¹⁷¹Pt. The identification was confirmed by the study of [the] ¹¹³In(Cu,xn)Pt^{176-x} excitation function for $3 \le x \le 5$." The measured half-life of 120(10) ms is close to the currently accepted half-life of 96(3) ms.

^{173–181}Pt

Siivola first observed ^{173–181}Pt in 1966 and reported his results in "Alpha-active Platinum Isotopes" [11]. The Berkeley Heavy Ion Linear Accelerator HILAC was used to bombard ^{168,170,172}Yb and ^{162,164}Er targets with beams of ¹⁶O and ²⁰Ne, respectively. The reaction products were deposited on an aluminum plate by helium gas flow. Alpha-particle decay was measured with a surface barrier counter and the isotopes were identified by excitation function measurements. "We conclude that the reaction observed in the ¹⁶O + Yb bombardments at 106 MeV excitation energy is (¹⁶O,8n), and the others, with their maxima at 93 and 80 MeV, are (¹⁶O,7n) and (¹⁶O,6n), respectively. This and the regular behaviour of the Yb(¹⁶O,xn) reactions give unambigously the mass numbers down to ¹⁷⁶Pt. The three lighter isotopes were assigned in a similar way using ²⁰Ne + Er bombardments." The half-lives of 0.7(2) s, 2.1(2) s, 6.0(5) s, 6.6(10) s, 21.3(15) s, 33(4) s, 50(5) s and 51(5) s are in general agreement with the accepted values of 0.889(17) s, 2.53(6) s, 6.33(15) s, 10.6(4) s, 20.7(7) s, 21.2(4) s, 56(2) s and 52.0(22) s, respectively, for A = 174–181.

182-184**Pt**

¹⁸²Pt, ¹⁸³Pt, and ¹⁸⁴Pt were first observed by Graeffe in 1963. He reported his results in "On the Alpha Activities of Platinum Isotopes" [12]. An iridium target was bombarded by 50-150 MeV protons from the Gustav Werner Institute synchrocyclotron at Uppsala, Sweden. The α-decay spectra were measured following chemical separation. "The absence of an alpha activity due to Pt¹⁸⁴ is unlikely, so that the 20 min activity can be tentatively assigned to Pt¹⁸⁴... The hindered 6.5 min activity, whose alpha energy (4.74 MeV) exceeds that of the 20 min activity assigned to Pt¹⁸⁴ can be tentatively assigned to the next lighter odd isotope Pt¹⁸³, and the 2.5 min activity to the following even isotope Pt¹⁸²." The reported values of 2.5(5) m, 6.5(10) m and 20(2) m agree with the currently accepted values of 3.0(2) m, 6.5(10) m and 17.3(2) m, respectively, for A = 182–184. An earlier measurement of 2.5(5) h [13] for the half-life of ¹⁸⁴Pt could not be confirmed.

¹⁸⁵**Pt**

¹⁸⁵Pt was first observed by Albouy et al. in 1960 with spallation reactions: "Noveaux isotopes de période courte obtenus par spallation de l'or" [14]. The gold targets were bombared with 155 MeV protons from the Orsay synchro-cyclotron. "L'intensité obtenue pour les masses 187, 186 et 185 rend peu précise la détermination des énergies des raies γ correspondant aux masss 187 et 186 et ne nous a pas permis d'indentifier des raies γ pour la chaîne de masses 185." (The intensity obtained for the masses 187, 186 and 185 makes a precise determination of the γ -ray energies corresponding to masses 187 and 186 possible but has not allowed us to identify γ -rays for the mass of 185.) The quoted half-life of 1.2 h agrees with the accepted value of 70.9(2.4) m.

^{186,187}**Pt**

Baranov et al. reported the first identification of ¹⁸⁶Pt and ¹⁸⁷Pt in the 1960 article "New Iridium and Platinum Isotopes: Ir¹⁸⁴ and Pt¹⁸⁷" [15]. The isotopes were produced by bombarding a gold target with 660 MeV protons from the Dubna Joint Institute for Nuclear Research synchrocyclotron and identified following chemical separation. "The period determined in this manner for Pt¹⁸⁷ was 2.0 ± 0.4 hours. For control purposes we also determined the period of the known platinum isotope Pt¹⁸⁶, from the intensity of the L-137 line belonging to Ir^{186} . We obtained for Pt^{186} a period of 2.5 ± 0.3 hours, which is in good agreement with the data of Smith & Hollander." Smith & Hollander [16] had assigned a half-life of 2.5 h to ¹⁸⁷Pt based on the γ -ray spectra of the daughter ¹⁸⁷Ir. However, the assignment of the observed γ -rays was later changed to ¹⁸⁶Ir [17]. Similar half-lives were reported by some of the same authors in the same issue [13]. About 6 month later the observation of ¹⁸⁶Pt and ¹⁸⁷Pt was independently reported by Albouy et al. [14]. The half-lives of 2.5(3) h (¹⁸⁶Pt) and 2.0(4) h (¹⁸⁷Pt) agree with the presently accepted values of 2.08(5) h and 2.35(3) h, respectively.

¹⁸⁸Pt

Naumann was the first to observe ¹⁸⁸Pt and reported his results in the 1954 paper "Identification of Platinum-188" [18]. 50-MeV protons from the Nevis and Harvard synchrocyclotrons bombarded a metallic iridium foil. Decay curves were measured with an Amperex 200C Geiger-Müller counter. "The reappearance of the 10-day decay component preceded by the short period growth suggests that this half-life be assigned to Pt^{188} ." The reported half-life of 10.3(4) d agrees with the currently accepted value of 10.2(3) d.

¹⁸⁹**Pt**

The discovery of ¹⁸⁹Pt was reported in "Radiochemical Study of Neutron-Deficient Chains in the Noble Metal Region" by Smith and Hollander in 1955 [16]. A set of stacked iridium and aluminum foils were bombarded with 32-MeV protons from the Berkeley proton linear accelerator. Decay curves of the chemical separated reaction products were recorded with a Geiger counter. "An ~12-hour activity in platinum was first observed in 1950 by Thompson and Rasmussen from 50-Mev proton bombardments of iridium, but a mass assignment was not made at that time. With the aid of J.O. Rasmussen, this activity has now been assigned to Pt¹⁸⁹ by means of proton excitation function experiments in which its yield from iridium is compared with that of 3.0-day Pt¹⁹¹ produced from the (p,3n) reaction on Ir¹⁹³." The reported half life of 10.5(10) h is consistent with the currently accepted value of 10.87(12) h. The reference mentioned in the quote was unpublished [19].

¹⁹⁰**Pt**

¹⁹⁰Pt was first reported by Duckworth et al. in "A New Stable Isotope of Platinum" [20] in 1949. Platinum isotopes were produced in an ion source and detected and analyzed by a double-focusing mass spectrograph. "With a spark between a platinum-iridium and a copper electrode a faint line appeared at mass 190 after an exposure of three hours. The electrodes were replaced by pure platinum electrodes. With an hour's exposure the faint 190 appeared. Similarly with two platinum electrodes of commercial purity the line at 190 was clearly visible after an hour's exposure."

¹⁹¹**Pt**

In 1947 Wilkinson described the first observation of ¹⁹¹Pt in "Some Isotopes of Platinum and Gold" [21]. Platinum and iridium targets were bombarded with α -particles, deuterons and neutrons from the 60-inch Crocker Laboratory cyclotron. Decay curves were measured following chemical separation. "*3.0-day platinum*.—Previously unreported, this isotope which is distinguished from the 4.3-day isotope

by its 0.5-Mev electron and strong 0.57-Mev γ -ray has been observed in low yield in Pt+d, Pt+fast neutron, and Ir+ α bombardments... The activity has been assigned provisionally to mass 191." The measured half-life of 3.00(2) d is consistent with the currently accepted value of 2.83(2) d.

¹⁹²**Pt**

Dempster identified ¹⁹²Pt for the first time in the 1935 article "Isotopic Constitution of Platinum and Rhodium" [22]. An alloy of platinum with 10% rhodium were used as electrodes of a spark for the source of a spectrograph. "The analysis of the platinum ions from a high-frequency spark, using a new spectrograph, shows that this element consists of five isotopes with masses 192, 194, 195, 196, 198."

¹⁹³**Pt**

In 1947 Wilkinson described the first observation of ¹⁹³Pt in "Some Isotopes of Platinum and Gold" [21]. The 60-inch Crocker Laboratory cyclotron bombarded platinum and iridium targets with α -particles, deuterons and neutrons. Decay curves were measured following chemical separation. "...The activity is attributed to Pt¹⁹³ decaying by orbital electron capture for the following reasons. The isotope is formed in the deuteron, fast and thermal neutron bombardments of platinum, and also the deuteron and α -particle bombardment of iridium in yields agreeing with allocation to mass 193." The reported half-life of 4.33(3) d corresponds to an isomeric state. A previously measured half-life of 49 m [23] could not be confirmed.

^{194–196}Pt

¹⁹⁴Pt, ¹⁹⁵Pt and ¹⁹⁶Pt were first identified by Fuchs and Kopfermann in the 1935 article "Über die Isotopen des Platins" [24]. The masses of these isotopes were determined by measuring the isotope shift of the visible platinum lines. "In der Erwartung, daß im Spektrum des Platins eine an schweren Elementen häufig beobachtete Isotopieverschiebung auftreten würde, haben wir, um das Isotopenproblem dieses Elementes zu lösen, eine Hyperfeinstrukturanalyse der im Sichtbaren gelegenen PtI-Linien durchgeführt… Der Vergleich mit dem chemischen Atomgewicht (195.2) läßt nur die Deutung zu, daß es sich bei den drei gefundenen Isotopen um die Pt-Isotopen mit den Massenzahlen 194,195 und 196 handelt, deren Mischungsverhähltnis auf Grund unserer Intensitätsschätzungen ungefähr 5:8:8 beträgt." [With the expectation that the spectra of platinum will exhibit an isotope shift common to many of the heavy elements, we conducted a hyperfine structure analysis of the visible PtI lines in order to solve the isotope problem of this element… The only interpretation from the comparison with the chemical atomic weight (195.2) is that the three observed isotopes correspond to the Pt-isotopes with the mass numbers 194, 195, and 196; according to our intensity estimates the abundance ratio is approximately 5:8:8.] The mass spectroscopic identification of these isotopes were submitted less than two weeks later [22].

¹⁹⁷**Pt**

Cork and Lawrence reported the discovery of ¹⁹⁷Pt in the 1936 publication "The Transmutation of Platinum by Deuterons" [23]. Deuterons accelerated to 5 MV by a magnetic resonance accelerator bombarded a stack of platinum foils. The resulting isotopes were separated by chemical means and

the decay curves of the individual foils were recorded. "Because of the greater abundance of Pt^{196} the 14.5-hr. electron activity of platinum can be reasonably ascribed to Pt^{197} , which decays to gold..." The reported half-life of 14.5 hr is close to the currently accepted value of 19.8915(19) h.

¹⁹⁸**Pt**

Dempster identified ¹⁹⁸Pt for the first time in the 1935 article "Isotopic Constitution of Platinum and Rhodium" [22]. An alloy of platinum with 10% rhodium were used as electrodes of a spark for the source of a spectrograph. "The analysis of the platinum ions from a high-frequency spark, using a new spectrograph, shows that this element consists of five isotopes with masses 192, 194, 195, 196, 198."

¹⁹⁹**Pt**

McMillan et al. observed ¹⁹⁹Pt in the 1937 article "Neutron-Induced Radioactivity of the Noble Metals" [25]. Slow neutrons irradiated platinum targets which were subsequently chemical separated and their activity was measured. "Reference to the isotope chart show that one would expect Pt¹⁹⁹ to form unstable Au¹⁹⁹. We made successive separations of gold from activated platinum to find which platinum period is its parent, and found that it does not come from the 18-hr. period, but most probably does come from the 31-min. period." The reported half life of 31 min is in agreement with the currently accepted value of 30.80(21) min. Two activities of 50 min [26] and 36 min [27] had previously been reported for platinum without mass assignment. Also, a half-life of 49 min had been assigned to ¹⁹³Pt [23].

²⁰⁰Pt

Roy et al. described the discovery of ²⁰⁰Pt in "New Radioisotope of Platinum–Pt²⁰⁰" [28]. ¹⁹⁸Pt targets were irradiated by neutrons from the Chalk River NRX reactor to produce ²⁰⁰Pt by successive neutron capture. The presence of ²⁰⁰Pt was determined by milking the ²⁰⁰Au daughter and measuring the activities. "Parent-daughter isolation experiments were performed to establish both the half-life of Pt²⁰⁰ and its genetic relationship to Au²⁰⁰... The average value for the half-life of Pt²⁰⁰ is 11.5±1.0 hr." This half-life agrees with the currently accepted value of 12.6(3) h.

²⁰¹**Pt**

²⁰¹Pt was first reported by Facetti et al. in the 1962 report "A New Isotope, Pt²⁰¹" [29]. Neutrons from the Puerto Rico Nuclear Center nuclear reactor were used to irradiate mercury compounds. The activated samples were chemically separated and their decay was measured with a GM counter. "From all these facts, it follows that the observed half-life of 2.3 ± 0.2 min is due to the disintegration of a new isotope: Pt²⁰¹." The reported half-life of 2.3(2) m is in good agreement with the currently accepted value of 2.5(1) m.

²⁰²**Pt**

The first observation of 202 Pt was described in 1992 by Shi et al. in "Identification of a New Neutron Rich Isotope 202 Pt" [30]. 250 MeV protons from the Shanghai Institute of Nuclear Research K=40

cyclotron bombarded a beryllium target to produce neutrons, which then irradiated a mercury target. 202 Pt was identified by measuring the γ -ray spectra of the chemically separated activities with a HpGe detector. "The gamma ray 439.6 keV from the decay 202 Pt $\rightarrow ^{202}$ Au $\rightarrow ^{202}$ Hg was detected... The half-life of 202 Pt is determined to be 43.6±15.2 h." This half-life is the currently accepted value.

^{203,204}**Pt**

The first refereed publication of the observation of ²⁰³Pt and ²⁰⁴Pt was the 2008 paper "Singleparticle Behavior at N = 126: Isomeric Decays in Neutron-rich ²⁰⁴Pt" by Steer et al. [31]. A 1 GeV/A ²⁰⁸Pb beam from the SIS-18 accelerator at GSI impinged on a ⁹Be target and the projectile fragments were selected and identified in flight by the FRagment Separator FRS. The observation of ²⁰³Pt is not specifically mentioned but ²⁰³Pt events are clearly visible and identified in the particle identification plot in the first figure. Details of the ²⁰³Pt had previously been published by the same group in two different conference proceedings [32,33]."The results for ²⁰⁴Pt were obtained from four different magnetic rigidity settings of the FRS. A total of 9.3 ×10⁴ ²⁰⁴Pt ions was implanted in the stopper." The ²⁰⁴Pt data also had been presented previously in two conference proceedings [33,34].

3. SUMMARY

The discoveries of the known platinum isotopes have been compiled and the methods of their production discussed. Most of the assignments agree with the review article by Arblaster [6]. The exceptions are: (1) ¹⁷²Pt where Arblaster credits unpublished work by Cabot as quoted in an overview paper by Gauvin et al. [35]; (2) ¹⁸⁶Pt which is credited to Albouy et al. [14], however the identification by Baranov et al. [15] published a few months earlier is correct; and (3) the stable isotopes ^{194–196}Pt where we found a paper by Fuchs and Kopfermann [24] which was submitted less than two weeks prior to the mass spectroscopic work by Dempster [22]. In addition, the half-lives for ¹⁸⁴Pt and ¹⁹³Pt were first reported incorrectly and ¹⁸⁶Pt was first identified as ¹⁸⁷Pt. The half-life of ¹⁹⁹Pt was initially measured without mass identification. Finally, ²⁰³Pt has yet to be specifically described in the refereed literature.

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL).

REFERENCES

- 1. J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data Tables 95, 805 (2009)
- 2. G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)

- 3. ENSDF, Evaluated Nuclear Structure Data File, mainted by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
- 4. S. Goriely, M. Samyn, and J.M. Pearson, Phys. Rev. C 75, 64312 (2007)
- 5. M. Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)
- 6. J.W. Arblaster, Platinum Metals Rev. 44, 173 (2000)
- 7. H.A. Grunder and F.B. Selph, Annu. Rev, Nucl. Sci. 27, 353 (1977)
- C.R. Bingham, K.S. Toth, J.C. Batchelder, D.J. Blumenthal, L.T. Brown, B.C. Busse, L.F. Conticchio, C.N. Davids, T. Davinson, D.J. Henderson, R.J. Irvine, D. Seweryniak, W.B. Walters, P.J. Woods, and B.E. Zimmerman, Phys. Rev. C 54, R20 (1996)
- 9. S. Hofmann, G. Münzenberg, F. Heßberger, W. Reisdorf, P. Armbruster, and B. Thuma, Z. Phys. A **299**, 281 (1981)
- 10. S. Della Negra, C. Deprun, D. Jacquet, and Y. Le Beyec, Z. Phys. A 300, 251 (1981)
- 11. A. Siivola, Nucl. Phys. 84, 385 (1966)
- 12. G. Graeffe, Ann. Acad. Sci. Fennicae, Ser. A VI, No. 128, 1 (1963)
- T.V. Malysheva, B.A. Khotin, A.K. Lavrukhina, L.N. Kryukova and V.V. Muraveva, Izv. Akad. Nauk SSSR Ser. Fiz. 24, 1113 (1960)
- 14. G. Albouy, M. Gusakow, and N. Poffe, J. Phys. Radium, 21, 751 (1960)
- 15. V.I. Baranov, K.Ya. Gromov, B.S. Dzhelepov, Z.C. Bai, T.V. Malysheva, V.A. Morozov, B.A. Khotin and V.G. Chumin, Izv. Akad. Nauk SSSR Ser. Fiz. 24, 1079 (1960)
- 16. W.G. Smith and J.M. Hollander, Phys. Rev. 98, 1258 (1955)
- 17. R.M. Diamond and J.M. Hollander, Nucl. Phys. 8, 143 (1958)
- 18. R.A. Naumann, Phys. Rev. 96, 90 (1954)
- 19. S.G. Thompson and J.O. Rasmussen, unpublished
- 20. H.E. Duckworth, R.E. Black, and R.F. Woodcock, Phys. Rev. 75, 1438 (1949)
- 21. G. Wilkinson, Phys. Rev. 73, 252 (1948)
- 22. A.J. Dempster, Nature 135, 993 (1935)
- 23. J.M. Cork and E.O. Lawrence, Phys. Rev. 49, 788 (1936)
- 24. B. Fuchs and H. Kopfermann, Naturwissenschaften 23, 372 (1935)
- 25. E. McMillan, M. Kamen, and S. Ruben, Phys. Rev. 52, 375 (1937)
- 26. E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, and E. Segrè, Proc. Roy. Soc. A 149, 522 (1935)
- 27. J.C. McLennan, L.G. Grimmet, and J. Read, Nature 135, 147 (1935)

- 28. L.P. Roy, J. Roy, and J.S. Merritt, Phys. Rev. 105, 1337 (1957)
- 29. J. Facetti, E. Trabal, R. McClin, and S. Torres, Phys. Rev. 127, 1690 (1962)
- 30. S. Shi, W.D. Huang, Y. Li, D.Z. Yin, J.H. Gu, and J.Q. Tian, Z. Phys. A 342, 369 (1992)
- 31. S.J. Steer, Zs. Podolyak, S. Pietri, M. Gorska, P.H. Regan, D. Rudolph, E. Werner-Malento, A.B. Garnsworthy, R. Hoischen, J. Gerl, H.J. Wollersheim, K.H. Maier, H. Grawe, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, H. Geissel, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfützner, T. Kurtukian-Nieto, G. Benzoni, A. Jungclaus, D.L. Balabanski, C. Brandau, B.A. Brown, A.M. Bruce, W.N. Catford, I.J. Cullen, Zs. Dombradi, M.E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, R. Krücken, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, S. Schwertel, T. Shizuma, P.M. Walker, and O. Wieland, Phys. Rev. C 78, 061302 (2008)
- 32. T. Kurtukian-Nieto, J. Benlliure, K.H. Schmidt, E. Casarejos, D. Cortina-Gil, M. Fernandez-Ordoñez, J. Pereira L. Audouin, B. Blank, F. Becker, J. Giovinazzo, D. Henzlova, B. Jurado, F. Rejmund, and O. Yordanov, Inter. Sym. on Exotic Nuclear Systems, AIP Conf. Proc. 802, 73 (2005)
- 33. S.J. Steer, Zs. Podolyak, S. Pietri, P.H. Regan, D. Rudolph, E. Werner-Malento, A.B. Garnsworthy, R. Hoischen, M. Gorska, J. Gerl, H.J. Wollersheim, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, H. Geissel, J. Grebosz, A. Kelic, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfützner, T. Kurtukian-Nieto, G. Benzoni, A. Jungclaus, D.L. Balabanski, C. Brandau, A.M. Bruce, W.N. Catford, I.J. Cullen, Zs. Dombradi, M.E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, T. Shizuma, S. Schwertel, P.M. Walker, and O. Wieland, Acta Phys. Pol. **38**, 1283 (2007)
- 34. Zs. Podolyak, S.J. Steer, S. Pietri, E. Werner-Malento, P.H. Regan, D. Rudolph, A.B. Garnsworthy, R. Hoischen, M. Gorska, J. Gerl, H.J. Wollersheim, T. Kurtukian-Nieto, G. Benzoni, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, H. Geissel, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfützner, M. Hellström, A. Jungclaus, L.-L. Andersson, L. Atanasova, D.L. Balabanski, M.A. Bentley, B. Blank, A. Blazhev, C. Brandau, J. Brown, A.M. Bruce, F. Camera, W.N. Catford, I.J. Cullen, Zs. Dombradi, M.E. Estevez, C. Fahlander, W. Gelletly, G. Ilie, E.K. Johansson, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, T. Shizuma, A.J. Simons, S. Schwertel, P.M. Walker, O. Wieland, and B.A. Brown, Eur. Phys. J. Special Topics 150, 165 (2007)
- 35. H. Gauvin, Y. LeBeyec, J. Livet, and J.L. Reyss, Ann. Phys. 9, 241 (1975)

EXPLANATION OF TABLE

TABLE I.Discovery of platinum isotopes

Isotope	Platinum isotope
Author	First author of refereed publication
Journal	Journal of publication
Ref.	Reference
Method	Production method used in the discovery:
	FE: fusion evaporation
	LP: light-particle reactions (including neutrons)
	MS: mass spectroscopy
	SP: spallation reactions
	AS: atomic spectroscopy
	PF: projectile fragmentation or fission
	NC: neutron-capture reactions
Laboratory	Laboratory where the experiment was performed
Country	Country of laboratory
Year	Year of discovery

TABLE I. Discovery of Platinum Isotopes

See page 12 for Explanation of Tables

This space intentionally left blank

Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
¹⁶⁶ Pt	C.R. Bingham	Phys. Rev. C	Bin96	FE	Argonne	USA	1996
¹⁶⁷ Pt	C.R. Bingham	Phys. Rev. C	Bin96	FE	Argonne	USA	1996
¹⁶⁸ Pt	S. Hofmann	Z. Phys. A	Hof81	FE	Darmstadt	Germany	1981
¹⁶⁹ Pt	S. Hofmann	Z. Phys. A	Hof81	FE	Darmstadt	Germany	1981
¹⁷⁰ Pt	S. Hofmann	Z. Phys. A	Hof81	FE	Darmstadt	Germany	1981
¹⁷¹ Pt	S. Hofmann	Z. Phys. A	Hof81	FE	Darmstadt	Germany	1981
¹⁷² Pt	S. Della Negra	Z. Phys. A	Del81	FE	Orsay	France	1981
¹⁷³ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁷⁴ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁷⁵ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁷⁶ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁷⁷ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁷⁸ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁷⁹ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁸⁰ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁸¹ Pt	A. Siivola	Nucl. Phys.	Sii66	FE	Berkeley	USA	1966
¹⁸² Pt	G. Graeffe	Ann. Acad. Sci. Fenn.	Gra63	FE	Uppsala	Sweden	1963
¹⁸³ Pt	G. Graeffe	Ann. Acad. Sci. Fenn.	Gra63	FE	Uppsala	Sweden	1963
¹⁸⁴ Pt	G. Graeffe	Ann. Acad. Sci. Fenn.	Gra63	FE	Uppsala	Sweden	1963
¹⁸⁵ Pt	G. Albouy	J. Phys. Radium	Alb60	LP	Orsay	France	1960
¹⁸⁶ Pt	V.I. Baranov	Izvest. Akad. Nauk.	Bar60	SP	Dubna	Russia	1960
¹⁸⁷ Pt	V.I. Baranov	Izvest. Akad. Nauk.	Bar60	SP	Dubna	Russia	1960
¹⁸⁸ Pt	R.A. Naumann	Phys. Rev.	Nau54	LP	Harvard	USA	1954
¹⁸⁹ Pt	W.G. Smith	Phys. Rev.	Smi55	LP	Berkeley	USA	1955
¹⁹⁰ Pt	H.E. Duckworth	Phys. Rev.	Duc49	MS	Middletown	USA	1949
¹⁹¹ Pt	G. Wilkinson	Phys. Rev.	Wil48	LP	Berkeley	USA	1948
¹⁹² Pt	A.J. Dempster	Nature	Dem35	MS	Chicago	USA	1935
¹⁹³ Pt	G. Wilkinson	Phys. Rev.	Wil48	LP	Berkeley	USA	1948
¹⁹⁴ Pt	B. Fuchs	Naturwiss.	Fuc35	AS	Berlin	Germany	1935
¹⁹⁵ Pt	B. Fuchs	Naturwiss.	Fuc35	AS	Berlin	Germany	1935
¹⁹⁶ Pt	B. Fuchs	Naturwiss.	Fuc35	AS	Berlin	Germany	1935
¹⁹⁷ Pt	J.M. Cork	Phys. Rev.	Cor36	LP	Berkeley	USA	1936
¹⁹⁸ Pt	A.J. Dempster	Nature	Dem35	MS	Chicago	USA	1935
¹⁹⁹ Pt	E. McMillan	Phys. Rev.	McM37	LP	Berkeley	USA	1937
²⁰⁰ Pt	L.P. Roy	Phys. Rev.	Roy57	NC	Chalk River	Canada	1957
²⁰¹ Pt	J. Facetti	Phys. Rev.	Fac62	LP	Mayaguez	Puerto Rico	1962
²⁰² Pt	S. Shi	Z. Phys. A	Shi92	LP	Shanghai	China	1992
²⁰³ Pt	S.T. Steer	Phys. Rev.	Ste08	PF	Darmstadt	Germany	2008
²⁰⁴ Pt	S.T. Steer	Phys. Rev.	Ste08	PF	Darmstadt	Germany	2008

REFERENCES FOR TABLE

- Alb60 G. Albouy, M. Gusakow, and N. Poffe, J. Phys. Radium, 21, 751 (1960)
- Bar60 V.I. Baranov, K.Ya. Gromov, B.S. Dzhelepov, Z.C. Bai, T.V. Malysheva, V.A. Morozov, B.A. Khotin and V.G. Chumin, Izv. Akad. Nauk SSSR Ser. Fiz. 24, 1079 (1960)
- Bin96 C.R. Bingham, K.S. Toth, J.C. Batchelder, D.J. Blumenthal, L.T. Brown, B.C. Busse, L.F. Conticchio, C.N. Davids, T. Davinson, D.J. Henderson, R.J. Irvine, D. Seweryniak, W.B. Walters, P.J. Woods, and B.E. Zimmerman, Phys. Rev. C 54, R20 (1996)
- Cor36 J.M. Cork and E.O. Lawrence, Phys. Rev. 49, 788 (1936)
- Del81 S. Della Negra, C. Deprun, D. Jacquet, and Y. Le Beyec, Z. Phys. A 300, 251 (1981)
- Dem35 A.J. Dempster, Nature **135**, 993 (1935)
- Duc49 H.E. Duckworth, R.E. Black, and R.F. Woodcock, Phys. Rev. 75, 1438 (1949)
- Fac62 J. Facetti, E. Trabal, R. McClin, and S. Torres, Phys. Rev. 127, 1690 (1962)
- Fuc35 B. Fuchs and H. Kopfermann, Naturwiss. 23, 372 (1935)
- Gra63 G. Graeffe, Ann. Acad. Sci. Fennicae, Ser. A VI, No. 128, 1 (1963)
- Hof81 S. Hofmann, G. Münzenberg, F. Heßberger, W. Reisdorf, P. Armbruster, and B. Thuma, Z. Phys. A 299, 281 (1981)
- McM37 E. McMillan, M. Kamen, and S. Ruben, Phys. Rev. 52, 375 (1937)
- Nau54 R.A. Naumann, Phys. Rev. 96, 90 (1954)
- Roy57 L.P. Roy, J. Roy, and J.S. Merritt, Phys. Rev. 105, 1337 (1957)
- Shi92 S. Shi, W.D. Huang, Y. Li, D.Z. Yin, J.H. Gu, and J.Q. Tian, Z. Phys. A 342, 369 (1992)
- Sii66 A. Siivola, Nucl. Phys. **84**, 385 (1966)
- Smi55 W.G. Smith and J.M. Hollander, Phys. Rev. 98, 1258 (1955)
- Ste08 S.J. Steer, Zs. Podolyak, S. Pietri, M. Gorska, P.H. Regan, D. Rudolph, E. Werner-Malento, A.B. Garnsworthy, R. Hoischen, J. Gerl, H.J. Wollersheim, K.H. Maier, H. Grawe, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, H. Geissel, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfützner, T. Kurtukian-Nieto, G. Benzoni, A. Jungclaus, D.L. Balabanski, C. Brandau, B.A. Brown, A.M. Bruce, W.N. Catford, I.J. Cullen, Zs. Dombradi, M.E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, R. Krücken, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, S. Schwertel, T. Shizuma, P.M. Walker, and O. Wieland, Phys. Rev. C 78, 061302 (2008)
- Wil48 G. Wilkinson, Phys. Rev. 73, 252 (1948)