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Abstract
Simple scaling formulas are derived for estimating the minimum power required to polarize amagat

levels of Xe-129 using the FEL tuned to the D1 transition of Cesium. If it ever happens, Version 2.0 will
contain the results of a numerical simulation.
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1 Rate Equations

The general rate equations for the polarizations for single alkali-Xe SEOP are given by:
dPA

dt
= +A1 − A2/2 − A0PA + kse[129] (P129 − PA) + k′

se[131] (P131 − PA) − ΓAPA (1)

dP129

dt
= +kse[A] (PA − P129) − Γ129P129 (2)

dP131

dt
= +k′

se[A] (PA − P131) − Γ131P131 (3)

where P is the polarization of a particular species, A(1,2) is the differential D1 (D2) optical pumping rate, A0

is the total optical pumping rate, kse(k′
se) is the spin-exchange rate constant for Xe-129 (Xe-131), [· · ·] refer

to a number density, Γ is the relaxation rate of a particular species, and the symbols/subscripts A, 129, 131
specify the alkali metal, Xe-129, & Xe-131 respectively. The optical pumping rates are defined by:

A0 = 2Λ
∫ ∞

0

[ΦR(ν,�r) + ΦL(ν,�r)]
[
σA

1(ν) + σA
2

]
dν (4)

A1 = 2Λ
∫ ∞

0

[ΦR(ν,�r) − ΦL(ν,�r)] cos(θ)σA
1(ν) dν (5)

A2 = 2Λ
∫ ∞

0

[ΦR(ν,�r) − ΦL(ν,�r)] cos(θ)σA
2(ν) dν (6)
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where Λ is the fraction of alkali atoms in the excited state that return to the opposite ground state, ΦR(L)

is the photon flux for right (left) circularly polarized light, θ is the angle between the magnetic field & the
laser beam direction, σA

1(2) is the unpolarized absorption cross section for D1 (D2) transitions. The following
equations account for attenuation of the photon flux as the beam propagates through the cell along the z
direction:

dΦR
dz

= −
(

(1 − PA cos(θ)) σA
1 +

(
1 +

PA

2
cos(θ)

)
σA

2

)
[A]ΦR (7)

dΦL
dz

= −
(

(1 + PA cos(θ)) σA
1 +

(
1 − PA

2
cos(θ)

)
σA

2

)
[A]ΦL (8)

At equilibrium, the polarizations are obtained by setting the previous equations to zero:

PA =
A1 − A2/2

A0 + kse[129]
(
1 − P129

PA

)
+ k′

se[131]
(
1 − P131

PA

)
+ ΓA

(9)

P129

PA

=
kse[A]

kse[A] + Γ129

(10)

P131

PA

=
k′
se[A]

k′
se[A] + Γ131

(11)

where unbalanced spin exchange between the alkali metal and Xe acts as an effective relaxation mechanism
for the alkali metal:

Γ′
A = ΓA + kse[129]

(
1 − P129

PA

)
+ k′

se[131]
(

1 − P131

PA

)
= ΓA +

(
kse[129]

kse[A] + Γ129

)
Γ129 +

(
k′
se[131]

k′
se[A] + Γ131

)
Γ131

(12)

2 Assumptions & Rate Constants

1. The polarization time scale for an alkali atom is much shorter than it’s diffusion timescale. Therefore,
the alkali polarization is sensitive to the local light polarization and intensity.

2. The polarization time scale for a Xe atom is on order of it’s diffusion timescale. However, we’ll make
the same argument that we made for the alkali atoms. Therefore, the Xe polarization is sensitive to
the local alkali polarization.

3. We’ll ignore the possibility that there are both an extra alkali relaxation rate that scales with the optical
pumping rate and an extra Xe relaxation rate that scales with the alkali density. In the language of
He-3 SEOP, this implies XA = X = 0.

4. Since we’re considering Rb (795 nm vs. 780 nm) and Cs (894 nm vs. 852 nm), we’ll ignore the
possibility of optical pumping the D2 line because it is so far away in both cases, A2/A1 � 1. In
addition, we’ll assume that the skew angle is zero, cos(θ) = 1, and that the light polarization is 1,
ΦL = 0. All this together implies that A0 = A1 = A and ΦR = Φ.

5. We’ll assume that an excited alkali atom has an equal probability of returning to either ground state,
so 2Λ = 1.

6. We’ll assume that the emission spectrum is centered on the absorption spectrum, so ν0 = νn.

7. We’ll assume that the Xe-129 relaxation is dominated by wall relaxation.

8. We’ll assume that we’re using 0.2 amg of N2 and 1-10 amagats of isotopically enriched Xe: Xe-129
(80%) & Xe-131 (20%). In addition, we’ll assume a 2.0 inch diameter cell, which results in about
50 to 500 cc · atm of Xe-129.
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Species Reaction rate constant units reference

Rb relaxation by Rb 0.065 kHz per 1014/cm3 Knize
Rb relaxation by Cs 0.21 kHz per 1014/cm3 geometric mean
Rb relaxation by N2 0.25 kHz per amg Wagshul/Chupp
Rb binary exchange w/ Xe -131 1 kHz per amg Ishy priv comm
Rb 3-body exchange w/ Xe-131 3 kHz · amg per amg Ishy priv comm
Rb binary exchange w/ Xe -129 10 kHz per amg Cates 1992
Rb relaxation by Xe 18 kHz per amg some ref Ishy
Rb 3-body exchange w/ Xe-129 30 kHz · amg per amg Cates 1992

Cs relaxation by Rb 0.21 kHz per 1014/cm3 geometric mean
Cs relaxation by N2 0.25 kHz per amg est by Rb
Cs relaxation by Cs 0.7 kHz per 1014/cm3 Bhaskar
Cs binary exchange w/ Xe -131 1.1 kHz per amg Ishy priv comm
Cs 3-body exchange w/ Xe-131 3 kHz · amg per amg est by Rb
Cs binary exchange w/ Xe -129 11 kHz per amg Jau 2004
Cs relaxation by Xe 18 kHz per amg est by Rb
Cs 3-body exchange w/ Xe-129 30 kHz · amg per amg est by Rb

A exchange w/ A 90 kHz per 1014/cm3 OP72

Xe -129 relaxation by Xe 0.005 mHz per amg RMP97
Xe -131 binary exchange w/ Rb 3.7 mHz per 1014/cm3 Ishy priv comm
Xe -131 binary exchange w/ Cs 4.1 mHz per 1014/cm3 Ishy priv comm

Xe relaxation due to the wall 1 to 10 mHz James’ Thesis
Xe -131 3-body exchange w/ A 11 mHz · amg per 1014/cm3 Ishy priv comm
Xe -129 binary exchange w/ Rb 37 mHz per 1014/cm3 Cates 1992
Xe -131 relaxation by Xe 40 mHz per amg RMP97
Xe -129 binary exchange w/ Cs 41 mHz per 1014/cm3 Jau 2004
Xe -129 3-body exchange w/ A 110 mHz · amg per 1014/cm3 Cates 1992

Table 1: Rate Constants for Spin Exchange and Spin Relaxation. When rate constant data is unavailable,
we’ll use the Rb value or scale by the ratio of the square of the Xe nuclear gyromagnetic ratios.

9. We’ll assume that the laser beam spot can be modeled by gaussian beam optics.

10. We’ll assume a laser power of up to 2 kW with a spectral emission linewidth as low as FWHM = 150
GHz.

11. We’ll ignore the satellite lines (or “shoulder”) in the pressure broadened absorption spectrum of that
alkali metal that is due to molecular formation with Xe.

3 Binary and Three Body Spin Exchange Rates

The spin exchange rate constant for Xe is usually given as a sum of two parts:

kse =
(
〈σv〉2 +

γMζ

[Xe]

)
= 〈σv〉2

(
1 +

[Xe]3
[Xe]

)
(13)

where 〈σv〉2 is the binary spin exchange rate constant, γM is the three body van der Waals rate constant, ζ
is a unitless parameter that accounts for the effect of the alkali nuclear spin during spin exchange, and [Xe]3
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isotope nat. abund., fi nuclear spin, I paramagnetic coefficient, ε(I, P )

Rb-85 0.7217 5/2
(
35 + 42P 2 + 3P 4

)
/
(
3 + 10P 2 + 3P 4

)
Rb-87 0.2783 3/2

(
5 + P 2

)
/
(
1 + P 2

)
Cs-133 1.0 7/2

(
21 + 63P 2 + 27P 4 + P 6

)
/
(
1 + 7P 2 + 7P 4 + P 6

)

Table 2: Rb and Cs Nuclear Data

alkali species ζ for PA = 0 [Xe]3 for PA = 0 ζ for PA = 1 [Xe]3 for PA = 1

Rb 0.1791 0.53 amg 0.0949 0.28 amg

Cs 11/64 = 0.1719 0.50 amg 1/16 = 0.0625 0.18 amg

Table 3: ζ values for natural abundance Rb and Cs at high and low alkali polarizations. Also listed is the
Xe density [Xe]3 for which the binary and three body spin exchange rates are equal.

is the Xe density for which the binary and three body rates are equal. The term ζ depends on the alkali
polarization through the paramagnetic coefficient ε(I, PA) and is given by:

ζ =
1
2

∑
i

fi (1 + ε(Ii, PA))
(2Ii + 1)2

(14)

where Ii & fi are respectively the nuclear spin & fraction of alkali species i. Typical values of ζ are give in
table blah, but the bottom line is that for densities of much more than 1/2 an amagat of Xe, binary spin
exchange dominates.

One final note is how we calculate the Xe-131 rates since we can not find them in the literature. Since the
electronic wavefunctions of Xe-129 and Xe-131 are identical, the spin exchange matrix element scales only
with the gyromagnetic ratio. Therefore the cross section should scale as a the square of the gyromagnetic
ratios, ignoring the small difference in thermal velocities (private communication with “Urinates Pants If
Hot” ):

k′
se

kse
=

σ′
se

σse

=
|〈M ′

se〉|2
|〈Mse〉|2

=
∣∣∣∣γ131γ129

∣∣∣∣2 ≈ 0.1 (15)

4 Optical Pumping Rates

The photon absorption cross section σ(ν) is given by:

σA
n(ν) = πfnrecL(ν) (16)

where fn is the oscillator strength (1/3 for D1, 2/3 for D2), re is the classical electron radius, c is the speed
of light in a vacuum, and the Lorentzian line shape L(ν) is defined such that:

L(ν) =
Γn/2π

(ν − νn)2 + Γ2
n/4

lim
(Γn

νn
)→0

∫ ∞

0

L(ν) dν = 1 (17)

The location of the peak and it’s pressure broadened width are labeled by νn and Γn(≈ 20 GHz/amg)
respectively. Under our conditions, Γn

νn
= 150 GHz

105 GHz ≈ 10−4 ≈ 0, so the Lorentzian lineshape has unit
normalization.

The incident photon flux is defined in the following way:

Φ(ν, r, 0) =
number of photons

unit cross sectional area × unit time × unit frequency interval
= φ(r, 0)G(ν) (18)
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FWHM/Γn L L√π log(2)Γn/FWHM

1/32 0.021 0.999
1/16 0.042 0.997
1/8 0.084 0.989
1/4 0.163 0.960
1/2 0.297 0.875
1 0.478 0.705
2 0.661 0.488
4 0.803 0.296
8 0.893 0.165
16 0.944 0.087
32 0.971 0.045
64 0.985 0.023
128 0.993 0.011
256 0.996 0.006
512 0.998 0.003
1024 0.999 0.001

Table 4: Lineshape parameter vs. emission linewidth to absorption linewidth ratio. For ratios smaller than
about 1/3, the emission spectrum looks like a delta function. For ratios larger than about 8, the absorption
spectrum looks like a delta function. In between, it’s necessary to obtain the value by a numerical integration.

where the Gaussian lineshape G(ν) is defined by:

G(ν) =
2
√

log(2)/π

FWHM
exp

(
−4 log(2)

(ν − ν0)
2

FWHM2

)
lim(

FWHM
ν0

)
→0

∫ ∞

0

G(ν) dν = 1 (19)

Under our conditions, FWHM
ν0

= 150 GHz
105 GHz ≈ 10−4 ≈ 0, so the Gaussian lineshape also has unit normalization.

Assuming the fundamental gaussian mode, which implies cylindrical symmetry, φ has a radial dependence
at the front of the cell that is given by:

φ(r) =
P0

hν0

2
w2π

exp
(
−2r2

w2

) ∫ ∞

0

2πrhν0φ(r) dr = P0 (20)

where P0 is the total power of the beam, h is Plancks’s constant, ν0 is the center frequency of emission
spectrum, w is the beam radius, and r is the radial distance from the center of the beam spot. Putting all
this together gives the following for the optical pumping rate at the front of the cell:

A(r, 0) =
∫ ∞

0

Φ(ν, r, 0)σ(ν) dν =
2P0(r)fnreλ0

hw2

∫ ∞

0

L(ν)G(ν) dν (21)

Since the emission linewidth is rarely smaller than the absorption linewidth, it’s useful to define a unitless
lineshape parameter L as:

L =
∫ ∞

0

L(ν)
G(ν)
G(νn)

dν

[
lim

FWHM/Γn→∞
L
]

= 1
[

lim
FWHM/Γn→0

L
]

=
L(ν0)
G(νn)

=
(
FWHM

Γn

)
1√

π log(2)
(22)

and consequently rewrite the optical pumping rate as:

A(r, 0) = 800 kHz ×
[

P0(r)
100 W

] [
10 cm2

w2

] [
λ0

894 nm

]
[3f1]

[
150 GHz
FWHM

] [ L
0.5

]
(23)
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One last issue to consider is the N2 non-radiative quenching rate. The spontaneous emission rate from
the excited states to the ground state of Rb and Cs is about 30 MHz. The quenching rate constant due
to collisions with N2 is about 10 GHz/amg. The typical N2 density used is at least about 0.1 amg for a
quenching rate of around 1000 MHz. Because the quenching rate is much more that the spontaneous rate,
the cells are not usually sensitive to radiation trapping. However stimulated emission could also result in
radiation trapping if the laser power was high enough. To compare the scales, we’ll note that the stimulated
emission rate must be equal to the optical pumping rate. Furthermore, we’ll assume a 2 inch diameter cell
undergoing Cs D1 transitions:

maximum stimulated emission
N2 quenching

≈ 10−3 ×
[

P0

100 W

] [
150 GHz
FWHM

] [
0.1 amg

[N2]

]
(24)

maximum stimulated emission
spontaneous emission

≈ 0.03 ×
[

P0

100 W

] [
150 GHz
FWHM

]
(25)

Under typical conditions, P0 = 100 W, FWHM = 750 GHz, [N2] = 0.1 amg: stimulated emission � spontaneous
emission � N2 quenching. Under optimal FEL conditions, P0 = 2000 W, FWHM = 150 GHz, [N2] = 0.1 amg:
stimulated emission ≈ spontaneous emission � N2 quenching. To be on the safe side, it might not be a bad
idea to double the N2 density to about 0.2 amg.

5 Laser Power Requirements

If we’re willing to ignore details of the laser beam spectral profile, then we can derive some simple formulas
to estimate the laser power requirements. We’ll start an estimate of the change in photon flux for a fixed
alkali polarization PA from z = 0 to z = �:

dΦ(ν, r, z)
dz

= −[A] (1 − PA)σ1(ν)Φ(ν, r, z) (26)

d
∫∞
0 Φ(ν, r, z) dν

dz
= −[A] (1 − PA)

∫ ∞

0

σ1(ν)Φ(ν, r, z) dν

d
∫∞
0 φ(r, z)G(ν) dν

dz
= −[A]

(
1 − A

A + Γ′
A

)
A

dφ(r, z)
dz

= −[A]
(

Γ′
A

A + Γ′
A

)
A

dφ(r, z)
dz

= −[A]Γ′
A

(
A

A + Γ′
A

)
φ(r, �) − φ(r, 0)

�
≈ −[A]Γ′

APA (27)

where � is the path length at a distance r from the center of the cell and is given by:

�(r) = 2R

√
1 −

( r

R

)2

spherical cell (28)

�(r) = 2R cylindrical cell (29)

If we integrate from r = 0 to the cell radius, r = R, we can find the total change in power:

φ(r, �) − φ(r, 0) = −[A]Γ′
APA� (30)∫ R

0

2πrhν0 (φ(r, �) − φ(r, 0)) dr = −hν0[A]Γ′
APA

∫ R

0

2πr� dr (31)

Note that for either type of cell, the radial integral over �(r) simply results in the volume of the pumping
chamber: ∫ R

0

2πr� dr = Vpc (32)
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The change in power is negative because the alkali atoms in the cell are absorbing the light and transforming
it into heat:

ΔP0 ≈ −hν0[A]Γ′
APAVpc = −140 W ×

[
PA

0.9

] [
894 nm

λ0

] [
[A]

1014/cm3

] [
Γ′
A

100 kHz

] [
Vpc

70 cc

]
(33)

To figure out the minimum amount of laser power at the front of the cell to maintain a fixed alkali
polarization PA throughout the cell, we’ll first need to consider the minimum photon flux needed to maintain
PA at the back of the cell, z = �:

PA =
A

A + Γ′
A

(34)

A = Γ′
A

PA

1 − PA∫ ∞

0

Φ(ν, r, �)σ1(ν) dν = Γ′
A

[
PA

1 − PA

]

φ(r, �)πf1rec

∫ ∞

0

G(ν)L(ν) dν = Γ′
A

[
PA

1 − PA

]

φ(r, �)πf1recG(ν0)L = Γ′
A

[
PA

1 − PA

]

φ(r, �) =
[

Γ′
A

πf1recG(ν0)L
] [

PA

1 − PA

]
(35)

The minimum photon flux needed at the front of the cell z = 0 is the previous quantity plus the amount of
flux absorbed over the full path length:

φ(r, 0) = [A]Γ′
APA�(r)︸ ︷︷ ︸
Δφ

+
[

Γ′
A

πf1recG(ν0)L
] [

PA

1 − PA

]
︸ ︷︷ ︸

φ(r,�)

(36)

For a spherical cell, the highest incident photon flux and longest path length occur at the center of the cell
(r = 0, � = 2R), whereas the lowest flux and shortest path length occur at the edge of the cell (r = R, � = 0).
Therefore, we’ll calculate the total minimum power of the beam needed to maintain an alkali polarization
of PA by evaluating the previous equation at both r = 0 and r = R.

At the edge of the cell, we find:

φ(R, 0) =
[

Γ′
A

πf1recG(ν0)L
] [

PA

1 − PA

]
(37)

P0

hν0

2
w2π

exp
(
−2R2

w2

)
=

[
Γ′
A

πf1recG(ν0)L
] [

PA

1 − PA

]
(38)

P0 =
[
w2 exp

(
+

2R2

w2

)]
︸ ︷︷ ︸

f

[
hΓ′

A

2f1reλ0G(ν0)L
] [

PA

1 − PA

]
(39)

Before going further, it’s useful to find the value for the beam radius w that minimizes f :

∂f

∂w2
= w2

(−2R2

w4

)
exp

(
2R2

w2

)
+ exp

(
2R2

w2

)
=

f

w2

(
1 − 2R2

w2

)
= 0
}
→ w = R

√
2 (40)

Using the minimum intensity at the edge of the cell as a constraint, we find the minimum total beam power:

P0 = 308 W ×
[

w2

10 cm2

]
exp

(
2R2

w2
− 1
)[

Γ′
A

100 kHz

]
1

3f1

[
894 nm

λ0

] [
FWHM

150 GHz

] [
0.5
L
] [

0.1PA

0.9 (1 − PA)

]
(41)
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Using the minimum intensity at the back of the cell plus the power absorbed through the center of the cell
as a constraint, we find an alternative minimum total beam power:

φ(0, 0) = [A]Γ′
APA(2R) +

[
Γ′
A

πf1recG(ν0)L
] [

PA

1 − PA

]
(42)

2P0

hν0πw2
= [A]Γ′

APA(2R) +
[

Γ′
A

πf1recG(ν0)L
] [

PA

1 − PA

]

P0 = 157 W
[

w2

10 cm2

] [
894 nm

λ0

] [
Γ′
A

100 kHz

] [
PA

0.9

] [
[A]

1014/cm3

] [
2R

5 cm

]

+113 W
[

w2

10 cm2

] [
894 nm

λ0

] [
Γ′
A

100 kHz

] [
0.1PA

0.9 (1 − PA)

] [
1

3f1

] [
FWHM

150 GHz

] [
0.5
L
]

(43)

These two estimates for the total laser power required are constrained by the fact that the beam spatial
profile can only be controlled to a certain degree. It would be ideal to shape the beam to match the path
length profile of the cell, but that is not always possible. Therefore some of the laser power is necessarily
thrown away or used inefficiently.

6 Discussion

It’s useful to re-express the previous equations in terms of Xe quantities. Because we are working with
amagats of Xe, we can make the following substitutions:

1. We’ll express the alkali density as the desired alkali to Xe-129 polarization ratio and the Xe wall
relaxation rate:

[Cs] =
(

Γwall

kse

)(
P129

PCs

)(
1 − P129

PCs

)−1

(44)

kse = 〈σv〉2
(

1 +
[Xe]3
[Xe]

)
≈ 〈σv〉2 × 1.1 (45)

2. We’ll express the alkali relaxation rate as the Xe density, since collisions with Xe is the dominant
source of alkali relaxation.

Γ′
Cs ≈ [Xe]ksd

(
1 + 0.5 × [129]

[Xe]
kse
ksd

+
[131]
[Xe]

k′
se

ksd

)
≈ [Xe]ksd × 1.3 (46)

3. We’ll express the pressure broadened linewidth as the Xe density, since the Xe density is much more
than the N2 density.

Γ1 = (19 GHz/amg) ([Xe] + [N2]) ≈ (20 GHz/amg) [Xe] (47)

Using these substitutions, we get the following for the total power absorbed:

ΔP0 ≈ −3.3 W ×
[
P129

0.5

] [
0.4

1 − P129/PCs

] [
300 sec
Γ−1
wall

] [
[Xe]

1 amg

] [
Vpc

70 cc

]
(48)

The minimum total power estimated from using the edge intensity as a constraint is:

P0 = 65 W ×
[

[Xe]
1 amg

] [
FWHM

150 GHz

] [
0.5
L
] [

0.1PA

0.9 (1 − PA)

] [
w2

10 cm2

]
exp

(
2R2

w2
− 1
)

(49)

The minimum total power estimated using the center intensity as a constraint is:

P0 = 3.8 W
[

[Xe]
1 amg

] [
P129

0.5

] [
0.4

1 − P129/PCs

] [
300 sec
Γ−1
wall

] [
2R

5 cm

] [
w2

10 cm2

]

+24 W
[

[Xe]
1 amg

] [
0.1PA

0.9 (1 − PA)

] [
FWHM

150 GHz

] [
0.5
L
] [

w2

10 cm2

]
(50)
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7 Notes on SEOP Simulation

The equations derived in the previous sections ignore the details of the laser beam spectral profile. Whereas
those equations correctly count the number of photons removed from the beam, they do not keep track of
what frequencies those lost photons are. They assume that the spectral profile remains a gaussian throughout
the cell. In real life, the spectral profile of the beam develops a “hole” corresponding to the absorption peak
of the alkali atoms. A full simulation is needed to account for the fact that the laser beam spectral profiles
do not remain gaussian as it propagates through the cell. If I were to do the full Cs-Xe SEOP simulation,
then, for the record, I would use the following equations, taking into account the assumptions listed in the
previous sections:

PCs(r, z) =
A(r, z)

A(r, z) + Γ′
Cs

(51)

P129(r, z) = PCs(r, z)
[

kse[Cs]
kse[Cs] + Γ129

]
(52)

P131(r, z) = PCs(r, z)
[

k′
se[Cs]

k′
se[Cs] + Γ131

]
(53)

where the relaxation rates are given by the rate constants in table blah and these equations:

Γ′
Cs = ksd[Xe] +

(
kse[129]

kse[A] + Γ129

)
Γ129 +

(
k′
se[131]

k′
se[A] + Γ131

)
Γ131 + k′

sd[Cs] + k′′
sd[N2] (54)

Γ129 = Γwall (55)
Γ131 = Γwall + k′′′

sd[Xe] (56)

As mentioned before, we’re using isotopically enriched Xe:

[Xe] = 0.8 × [129] + 0.2 × [131] (57)

and the number density of Cs is given by the following formula adapted from the 1995 CRC:

[Cs] = 1014/cm3 ×
(

400 K
T

)
exp

[
21.71 − 22.05

(
400 K

T

)]
(58)

The optical pumping rate would be a numerical integration of the following:

A(r, z) = πf1rec

∫ ∞

0

Φ(ν, r, z)L(ν) dν (59)

The D1 oscillator strength for Cs is f1 = 0.37, which is an average of the NIST & Radzig value. We’ll use a
simple symmetric lorentzian for the absorption lineshape and estimate the pressure broadened width using
the Rb numbers:

L(ν) =
Γ1/2π

(ν − ν1)
2 + Γ2

1/4
(60)

Γ1 = (19 GHz/amg) ([Xe] + [N2]) (61)

where the initial photon flux would be given by a gaussian spectrum and gaussian beam profile:

Φ(ν, r, 0) = 1.8× 108/cm2 ×
[

P0

100 W

] [
10 cm2

w2

] [
λ0

894 nm

] [
150 GHz
FWHM

]
exp

(
−2r2

w2
−
[
5 (ν − ν0)
3 · FWHM

]2)
(62)

The photon flux of the propagating beam would be determined by:

1. Calculating the optical pumping rate at z

2. Calculating the polarizations at z

3. Calculating the photon flux at z + Δz using

Φ(ν, r, z + Δz) = Φ(ν, r, z) exp (−πf1rec[Cs] (1 − PCs(r, z))L(ν)Δz) (63)
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