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Abstract

This document will outline how to obtain (a) the sign of the 3He nuclear polarization, (b) the sign of
the alkali polarization, (c) the sign of the laser light polarization, & (d) the magnitude of the laser light
polarization. The sign of the 3He polarization relative to the holding field can be determined directly
from the sign of the frequency shift extracted from EPR polarimetry. If the 3He and alkali polarizations
are at equilibrium, then the signs of their respective polarizations are the same. To determine the sign
of the light polarization, one also needs to know the laser beam propagation direction relative to the
holding field. Finally, we’ll describe a standard technique to measure the degree of circular polarization
of the light using a rotatable beam splitting polarizing cube.
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1 Notation & Conventions

Operators, matrices, and unit vectors are denoted by hats M̂ . Hamiltonians are H, energies are E, frequencies
are ν (with units of Hz), and angular frequencies are ω (with units of rad·Hz). All quantities are denoted in
SI. Angular momentum operators are unitless:

�̂J2 |J, mJ〉 = J(J + 1) |J, mJ〉 (1)
Ĵz |J, mJ〉 = mJ |J, mJ〉 (mJ = −J..J) (2)

Ĵ± = Ĵx ± iĴy (3)

Ĵ± |J, mJ〉 =
√

J(J + 1) − mJ(mJ ± 1) |J, mJ ± 1〉 (4)

The longitudinal spin polarization is defined as:

P ≡

〈
�̂J
〉

J
(5)

The statistical weight is denoted by [J ] and is defined by [J ] ≡ 2J + 1. The magnetic moment arising from
a spin is written as:

�μ =
(μ

J

)
�J = gμx

�J (6)

where g is the unitless g-factor:

g =
1
J

(
μ

μx

)
(7)

The units are carried in μx, which is the Bohr magneton μB for the electron and the nuclear magneton
μN for nuclei. Note that the sign of the magnetic moment is carried implicitly in g or alternatively μ. For
example, g ≈ −2 for the electron, g ≈ 2(+2.79) for the proton, and g ≈ 2(−1.91) for the neutron. Finally,
the various angular momentum are usually labelled as:

• �S for the alkali electron spin

• �L for the alkali electron orbital angular momentum

• �J = �L + �S for the total alkali electronic angular momentum

• �I for the alkali nuclear spin

• �F = �I + �J for the total alkali atomic angular momentum

• �K for the noble gas nuclear spin

2 Brief Overview of EPR Frequency Shift Polarimetry

EPR frequency shift polarimetry (EPR) [1, 2, 3] is a method used to provide an absolute calibration of the
3He polarization in a target cell. It takes advantage of the Zeeman splitting of the hyperfine levels of an
alkali atom in it’s ground state:

E (mF , B) = 〈mF | Ĥ |mF 〉 = 〈mF | Ĥ0 − �̂μ · �B |mF 〉 = E0 − gμBmF B (8)

where E0 is the zero field energy of the alkali atom, |mF 〉 is the hyperfine state, and B is the magnitude of
the magnetic field. The g-factor is given by:

g =
ge

[I]

[
1 − gIμN

geμB

]
+ δg (mF , B) (9)

where ge (gI) is the g-factor associated with the spin of the electron (alkali nucleus) and δg “hides” the
dependence of the g-factor on mF and B. At sufficiently low fields, δg is essentially a small higher order
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correction. A magnetic field is considered low when the strength of the Zeeman interaction is small relative
to the hyperfine interaction. For 39K and 85Rb, the strength of these two interactions are equal at 165 gauss
and 1080 gauss respectively. Traditionally, the target cells are located in a magnetic holding field B0 that is
between 10 and 30 gauss. Therefore, for the foregoing discussion, we’ll drop the μN/μB and δg terms since
we are only interested in the sign of the polarization. (Beware, however, for accurate numerical results for
the magnitude of the 3He polarization, these two terms must be kept!)

The total field B is given by the vector sum of the holding field B0 and a small additional effective field
due to the presence of polarized 3He gas BHe:

�B = �B0 + �BHe (10)

Under typical operating conditions, roughly 15% of BHe is due to the average classical magnetic field produced
by the bulk magnetization of the polarized 3He gas in the region where the alkali atoms are probed. The rest
of BHe comes from an effective field due to the spin-exchange collisions that occur between the alkali and
3He atoms. For a uniformly polarized sphere of 3He, the sum of the classical field and effective spin-exchange
field is given by:

�BHe =
2μ0

3
κ0

�MHe (11)

where κ0 is a unitless temperature dependent (T ) quantity. Because the effective field due to spin exchange
cannot be calculated accurately from theory, κ0 must be determined empirically. The part of κ0 that is due
to spin exchange is given by [3, 4]:

κse(T ) = κ0(T ) − 1 (12)
Rb : κ0 = 6.39 + 0.00924 · (T − 200 oC) (13)
K : κ0 = 5.99 + 0.0086 · (T − 200 oC) (14)

Na : κ0 = 4.84 + 0.00914 · (T − 200 oC) (15)

The magnetization of a uniformly polarized sample of 3He is given by:

�MHe = ρ 〈�μ〉 = ρgKμN

〈
�K

〉
= ρgKμNK �P (16)

where ρ, gK , K, and P are resepectively the number density, g-factor, spin, and polarization of the 3He
nuclei. Under typical operating conditions, BHe is on the order of 10’s of milligauss.

During an EPR measurement, the frequency of transition between the mF = s(I + 1/2) state and the
mF = s(I − 1/2) state is monitored, where s = ± is the sign of the alkali polarization. In the low field limit,
this frequency is given by a sum of the contributions of the main field and the 3He gas:

ν =
(

ge

[I]

) (μB

h

)(
�B0 +

2μ0

3
κ0ρgKμNK �P

)
· B̂ = ν0 + δνK

(
�P · B̂

)
(17)

where B̂ is the unit vector pointing along the direction of the total field. Since the holding field is orders of
magnitude larger than the 3He field, the total field �B and the holding field �B0 are nearly parallel:

ν = ν0 + δνK

(
�P · B̂

)
≈ ν0 + δνK

(
�P · B̂0

)
(18)

To isolate the contribution from 3He, the 3He spins are “flipped” adiabatically while keeping the holding
field constant. To return the 3He spins to their original state, they are flipped adiabatically once more. At
the conclusion of the measurement, three frequencies have been recorded:

1. νbef , the EPR frequency before flipping the 3He spins

2. νmid, the EPR frequency after flipping the 3He spins for the first time

3. νaft, the EPR frequency after flipping the 3He spins for the second time
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Two frequency shifts are measured:

Δνbm ≡ νbef − νmid

2
= δνK

[
�Pbef − �Pmid

2

]
· B̂0 (19)

Δνam ≡ νaft − νmid

2
= δνK

[
�Paft − �Pmid

2

]
· B̂0 (20)

Assuming that no 3He polarization is lost in the course of the measurement, then the 3He polarizations are
related by:

�Pbef = −�Pmid = �Paft = �P (21)

and the frequency shift is given by:

Δν =
(

geμB

h[I]

) (
2μ0

3
κ0ρgKμNK

)(
�P · B̂0

)
(22)

Under typical operating conditions, this frequency shift is ±10’s of kHz.

3 The Sign of the 3He Polarization

Before going on further, it is imperative to reemphasize two important points:

1. The frequency shift due to polarized 3He is measured relative to the EPR frequency when the 3He
polarization is zero. In other words, the “baseline” EPR frequency is due to the all the fields not
associated with the 3He.

2. The sign of the 3He polarization is measured relative to the sign of the holding field (which is positive
by definition).

The sign of the frequency shift Δν is determined by the product gK

(
�P · B̂0

)
. Since the magnetic moment

of 3He is negative (gK < 0), the sign of the polarization is negative to the sign of the frequency shift:

sign
[
�P · B̂0

]
= −sign [Δν] (23)

The physical interpretation of this result is easy to understand. When the holding field and the field
due to 3He are parallel (antiparallel), then the two fields add (subtract). The resulting EPR frequency
is consequently greater (smaller) than the zero 3He polarization EPR frequency. Thus the frequency shift
is positive (negative). Because the magnetic moment of 3He is negative, the polarization of 3He and the
magnetic field due to the 3He are always of opposite sign:

sign
[
�P
]

= −sign
[
�BHe

]
(24)

whereas the sign of the expectation value of the spin state is always the same as the sign of the polarization:

sign
[
�P
]

= sign
[〈

�K
〉]

(25)

A graphical depiction of this argument is given at the bottom of Figs. (1) & (2). To summarize:

• well shape ⇒ Δν > 0 ⇒ BHe is parallel to B0

(
3He is in low energy state

)
⇒ BHe > 0 ⇒ P < 0

• hat shape ⇒ Δν < 0 ⇒ BHe is antiparallel to B0

(
3He is in high energy state

)
⇒ BHe < 0 ⇒ P > 0
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4 The Sign of the Alkali Polarization

If the spin system in the cell is at equilibrium, then one can be certain that the sign of the alkali polarization
is the same as the sign of the 3He polarization. The phrase “at equilibrium” means that both the alkali and
3He polarizations have reached their saturation values. The alkali and 3He spins are not at equilibrium after
the first spin flip and before the second spin flip during an EPR measurement. During this middle period of
an EPR measurement, the signs of the alkali and 3He polarizations are opposite.

This observation can used to define a looser and more useful definition for “at equilibrium:” the spin
system is “at equilibrium” when the difference between the number of alkali spin flips and the number of 3He
spin flips is even. The alkali spins are usually flipped by rotating the quarter waveplate used to circularly
polarize the laser beam by 90 degrees. Suppose that both the alkali and 3He polarizations are zero and the
laser has just been turned on. In this case, the polarizations of both the alkali atoms and 3He nuclei are
changing with time. However, since neither set of spins have been flipped, the signs of the polarizations
should be the same. In summary, as long as nothing “weird” has happened, the sign of the alkali polarization
should be the same as the sign of the 3He polarization.

An alternative way to determine the sign of the alkali polarization is from the EPR frequency and the
magnitude of the holding field. To lowest order, the frequencies are linear in field and independent of the mF

state. However, the higher order terms (hidden in δg) give an mF dependence to the EPR frequency. For
example, at B0 = 25 gauss, the difference in EPR frequencies between the mF = +(I + 1/2) ↔ +(I − 1/2)
transition and the mF = −(I + 1/2) ↔ −(I − 1/2) transition are -450 kHz and −4000 kHz for 85Rb and
39K respectively. To use this method, one needs to know the magnitude of the holding field to only about
20% for 39K EPR frequencies and to about 4% for 85Rb EPR frequencies. At 25 gauss, this corresponds to
only about 5 gauss for 39K EPR frequencies and to about 1 gauss for 85Rb EPR frequencies.

Finally, the signs of the alkali polarizations in a hybrid cell are always essentially the same. This is
because the alkali spin exchange is very fast (>MHz). The alkali atoms can always be thought of as being
“at equilibrium” with each other.

5 The Sign of the Light Polarization

5.1 Atomic vs. Light Coordinate System

Once the sign of the alkali polarization is known, the sign of the light polarization can be determined from
knowledge of the laser beam propagation direction relative to the holding field. This is a very tricky argument
for two reasons:

1. There are two different coordinate systems involved in this discussion.

2. There are two different conventions for labelling the circular polarization of light.

First let’s start with the two different coordinate systems. From the point of view of the alkali atom, the
most natural coordinate system is the one in which the positive z direction points along the direction of the
holding field. Let’s call this the atomic coordinate system. On the other hand, from the point of view of the
photon in the laser beam, the most natural coordinate system is the one in which the positive z direction
points along the direction of propagation of the laser beam. Let’s call this the light coordinate system.

When the laser beam is traveling parallel to the the holding field (Θ = 0), the atomic system and the
light system are one and the same. However, when the laser beam is travelling antiparallel to the holding
field (Θ = π), the atomic system and the light system point in opposite directions! See App. (A.5) for the
general case of Θ �= 0, π.

Suppose we’ve found that the polarization of 85Rb is negative. This means that the mF = −3 state is
being filled and the mF = +3 is being depopulated by the polarized light. If we ignore the nuclear spin,
then this corresponds to the mJ = +1/2 state being filled while the mJ = −1/2 is being depopulated. For
this to happen, the Rb atom must be selectively undergoing transitions from the

∣∣S1/2, +1/2
〉

state to the∣∣P1/2,−1/2
〉

state. This implies that the angular momentum carried by the photon in the atomic system
must be −1. Consequently, the electric field vector of the laser light is rotating clockwise around the z-axis
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of the atomic system. To be clear, “rotating” is really just shorthand for “rotating at a fixed point as a
function of time.”

If the laser beam is travelling parallel to the holding field, then our work is done. We can conclude
that the electric field vector is rotating clockwise around the laser beam propagation direction. Whether we
call that “right” or “left” circularly polarized light is a matter of convention that is discussed later. What
happens in the scenario where the laser beam is propagating antiparallel to the holding field? Recall that
the z direction in the light system points antiparallel to the z direction in the atomic system. This means
that the electric field vector is rotating counter-clockwise around the laser beam propagation direction, even
though it is rotating clockwise around the holding field. This argument is depicted graphically in the upper
and middle portions of Figs. (1) & (2).

5.2 “Helicity” vs. “Optics” Sign Convention

Now we can finally address the question of what “handedness” to label circularly polarized light: “right” or
“left.” One approach is to define a quantity called helicity, which is the sign of the projection of the angular
momentum of the photon about the photon propagation direction �Jγ onto the photon momentum �k:

h = sign
[
�Jγ · �k

]
(26)

The helicity obeys the right hand rule: it is positive when the electric field vector rotates counter-clockwise
about the light propagation direction. Once again, to be clear, by “rotate,” we mean “rotating as a function
of time at a fixed point.” Let’s call this the “helicity” convention. In this convention, it is natural to call
light with positive (negative) helicity , “right” (“left”) circularly polarized.

The other convention is the “standard optics” convention. In this case, we imagine how the electric field
vector rotates as a function of position at a fixed time. Suppose we can “freeze” time and “look” at the
electric field vector at different positions. If we were to connect that electric field vectors from location to
location, we would end up with a “corkscrew” shape. A “right” handed laser beam in the helicity convention
looks like a “left” handed corkscrew. The difference between these two conventions is depicted in Fig. (3).

6 The Magnitude of the Light Polarization

In this section, we use the notations and results of Apps. (A) & (B). One can measure the degree of circular
polarization of a beam of light by rotating a beam splitting polarizing cube about the beam propagation
direction. An input light polarization angle of θ wrt the cube axis is equivalent to having the cube axis be
−θ from the light polarization P axis. Therefore varying θ is equivalent to rotating the cube. If the incident
light is normal to the cube, then the intensity of the light transmitted through the cube is given by:

It =
∣∣∣Ĉt |E〉

∣∣∣2 = t21 〈EP |EP〉 + t22 〈ES |ES〉

=
E2

0Ttet

1 + et

(
1 − P + 1 + P + 2

√
1 − P 2 cos(2θ)

4

)
+

E2
0Tt

1 + et

(
1 − P + 1 + P − 2

√
1 − P 2 cos(2θ)

4

)

=
E2

0Tt

2

[
1 +

(
et − 1
et + 1

) √
1 − P 2 cos(2θ)

]
(27)

The maximum and minimum transmitted intensities are:

Imax =
E2

0Tt

2

[
1 +

(
et − 1
et + 1

) √
1 − P 2

]
(28)

Imin =
E2

0Tt

2

[
1 −

(
et − 1
et + 1

) √
1 − P 2

]
(29)

Defining the cube efficiency fc and forming the cube asymmetry Ac:

fc ≡
et − 1
et + 1

& Ac ≡ Imax − Imin

Imax + Imin
= fc

√
1 − P 2 (30)
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Figure 1: “Well” Spectrum. The field due to 3He points parallel to the holding field. The sign of the 3He
and alkali polarizations are negative. The angular momentum of the light is antiparallel to the holding field.
The EPR frequency shift measurement probes the mF = −(I + 1/2) ↔ −(I − 1/2) transition. Using the
helicity convention, the upper (middle) figure represents “left” (“right”) circularly polarized light travelling
parallel (antiparallel) to the holding field.
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Figure 2: “Hat” Spectrum. The field due to 3He points antiparallel to the holding field. The sign of the
3He and alkali polarizations are positive. The angular momentum of the light is parallel to the holding field.
The EPR frequency shift measurement probes the mF = +(I + 1/2) ↔ +(I − 1/2) transition. Using the
helicity convention, the upper (middle) figure represents “right” (“left”) circularly polarized light travelling
parallel (antiparallel) to the holding field.
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Figure 3: Right (helicity) circularly polarized light. Left: fixed time, forward in space. Right: fixed space,
forward in time.

yields a “pythagorean” expression for polarization:

P 2 +
(

Ac

fc

)2

= 1 (31)

where P is the degree of circular polarization.
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A Describing Polarized Light

A.1 Complex Representation: The Jones Calculus

We will use the Jones convention for defining the polarization state of the light (vectors) and the action
of the various optical elements (matrices). This convention uses complex number representation and a
linear polarization basis. The electric field component of a monochromatic electromagnetic plane wave with
propagation vector �k = kẑ at time t is:

�E(z, t) = Ex(z, t)x̂ + Ey(z, t)ŷ = |E〉 eikz−iωt (32)
Ex(z, t) = E0x exp (ikz − iωt + iαx) (33)
Ey(z, t) = E0y exp (ikz − iωt + iαy) (34)

|E〉 ≡
[

E0xeiαx

E0yeiαy

]
(35)

where the relative phase shift is α = αx − αy. Note that it is assumed that the real part of �E is taken when
the physical field is needed. At a fixed point is space and over one period (= 2π

ω ) in time, �E sweeps out an
ellipse in the xy-plane given by [5]:

(
Ex

E0x

)2

+
(

Ey

E0y

)2

− 2
(

Ex

E0x

) (
Ey

E0y

)
cos(α) = sin2(α) (36)

In this representation, computing the modulus square of the electric field vector gives:

�E∗ · �E = 〈E|E〉 = E2
0x + E2

0y (37)

The time averaged modulus squared of electric field vector is therefore:

∣∣∣�E∣∣∣2
time

≡
�E∗ · �E

2
=

E2
0x + E2

0y

2
(38)

and finally the intensity is:

I =
√

ε

μ

〈
�E∗ · �E

〉
time

=
√

ε

μ

〈E | E〉
2

=
〈B | B〉
2μ

√
εμ

(39)

A.2 Linear Polarization Basis

For linear polarization, the relative phase shift is an integer multiple of half a wave,

α = ±nπ (40)

or in other words the two components are in phase. Eqn. (36) becomes degenerate,

(
Ex

E0x

)2

+
(

Ey

E0y

)2

∓ 2
(

Ex

E0x

) (
Ey

E0y

)
= 0 (41)

with solutions
Ey

E0y
= ∓ Ex

E0x
(42)

Two specific solutions are the orthogonal axes of the xy-plane which correspond to horizontal and vertical
linearly polarized light. Horizontal linearly polarized light is denoted by

|P〉 = |x〉 =
[

1
0

]
(43)
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Vertical linearly polarized light is denoted by

|S〉 = |y〉 =
[

0
1

]
(44)

Linear polarization at an angle θ counterclockwise from the x-axis is

|θ〉 =
[

cos(θ)
sin(θ)

]
(45)

A.3 Circular Polarization Basis

When the relative phase shift is a quarter wave,

α = ±(2n + 1)
π

2
(46)

and the magnitudes of the two components are identical,

E0x = E0y (47)

then Eqn. (36) reduces to an equation for a circle:

Ex
2 + Ey

2 = 1 (48)

The two orthogonal states are labeled by their helicity, namely the sign of the projection of the spin to the
propagation vector. Right circularly polarized light,

|R〉 = |+〉 =
√

2
2

[
1

+i

]
(49)

following the right hand rule such that the spin is parallel to the direction of propagation. Left circularly
polarized light,

|L〉 = |−〉 =
√

2
2

[
1

−i

]
(50)

is antiparallel. Note that the standard optics convention is opposite to the helicity convention. In the helicity
convention, for right circularly polarized light, �E rotates counterclockwise in the xy-plane at a fixed point in
space. In the standard optics convention, for right circularly polarized light, �E rotates counterclockwise in the
xy-plane at a fixed moment in time as you move foward in the direction of propagation. See Fig. (3). Unless
otherwise noted, the helicity convention will be used. See [6] for further discussion regarding handedness
convention.

A.4 Stokes Parameters

Since the polarization vector of light has two components with complex coefficients, four real numbers are
required to describe it completely. These real numbers are called Stokes parameters. Unfortunately many
different conventions exist in the literature. For our purposes, the most useful convention in the circular
polarization basis for arbitrarily polarized light is:

|E〉 = E0e
iφp

[√
1 + P

2
e−iθ |R〉 +

√
1 − P

2
e+iθ |L〉

]
(51)

where φp is just an overall phase factor that rarely contains any useful information about the light. Equiv-
alently in the linear polarization basis, it is written as:

|E〉 = E0e
iφp

[(√
1 − P

e+iθ

2
+
√

1 + P
e−iθ

2

)
|P〉 +

(√
1 − P

e+iθ

2i
−
√

1 + P
e−iθ

2i

)
|S〉

]
(52)
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The magnitude of �E is:

√
〈E|E〉 =

√
〈ER|ER〉 + 〈EL|EL〉 =

√(
1 + P

2

)
E2

0 +
(

1 − P

2

)
E2

0 = E0 (53)

The degree of circular polarization of the light is:

〈ER|ER〉 − 〈EL|EL〉
〈E|E〉 =

(
1+P

2

)
E2

0 −
(

1−P
2

)
E2

0

E2
0

= P (54)

where P = +(−)1 for pure right (left) circular polarization and P = 0 for pure linear polarization. In the
linear basis for pure linear polarization:

|E〉 = E0e
iφp

[(
e+iθ

2
+

e−iθ

2

)
|P〉 +

(
e+iθ

2i
− e−iθ

2i

)
|S〉

]
= E0e

iφp [cos(θ) |P〉 + sin(θ) |S〉] (55)

where θ is the angle of the linear polarization vector with respect to the |P〉-axis. In general for elliptically
polarized light, θ is the angle that the major axis of the polarization ellipse makes with the |P〉-axis.

A.5 Projecting onto an Atomic Coordinate System

The rectangular light coordinate system is defined by:

1axis = |P〉 2axis = |S〉 3axis = |P〉 × |S〉 = |Z〉 (56)

where |Z〉 is the light propagation direction. The rectangular atomic coordinate system is defined by:

1axis = x̂ 2axis = ŷ 3axis = ẑ (57)

where the z-axis is traditionally taken to be the quantization axis (direction of the main magnetic “holding”
field). One useful way to decompose the light coordinates in the atomic coordinate representation is:

|P〉 = cos(Φ) cos(Θ)x̂ + sin(Φ) cos(Θ)ŷ − sin(Θ)ẑ (58)
|S〉 = − sin(Φ)x̂ + cos(Φ)ŷ (59)
|Z〉 = cos(Φ) sin(Θ)x̂ + sin(Φ) sin(Θ)ŷ + cos(Θ)ẑ (60)

|R〉 = [cos(Φ) cos(Θ) − i sin(Φ)]
x̂√
2

+ [sin(Φ) cos(Θ) + i cos(Φ)]
ŷ√
2
− sin(Θ)

ẑ√
2

(61)

|L〉 = [cos(Φ) cos(Θ) + i sin(Φ)]
x̂√
2

+ [sin(Φ) cos(Θ) − i cos(Φ)]
ŷ√
2
− sin(Θ)

ẑ√
2

(62)

where Φ and Θ are azimuthal and polar angles of the |Z〉 vector with respect to the spherical atomic
coordinate system. #check#make a diagram depicting this. The light polarization vector couples to the
atom most naturally in the irreducible spherical vector basis:

x̂ =
ε̂− − ε̂+√

2
ŷ = i

(
ε̂− + ε̂+√

2

)
ẑ = ε̂0 (63)

Combining the projection and irreducible basis decomposition gives the following for the light coordinates:

|P〉 = − sin(Θ)ε̂0 − exp(−iΦ) cos(Θ)
ε̂+√

2
+ exp(+iΦ) cos(Θ)

ε̂−√
2

(64)

|S〉 = i exp(−iΦ)
ε̂+√

2
+ i exp(+iΦ)

ε̂−√
2

(65)

|Z〉 = + cos(Θ)ε̂0 − exp(−iΦ) sin(Θ)
ε̂+√

2
+ exp(+iΦ) sin(Θ)

ε̂−√
2

(66)

|R〉 = − sin(Θ)
ε̂0√
2
− exp(−iΦ)

[
1 + cos(Θ)

2

]
ε̂+ − exp(+iΦ)

[
1 − cos(Θ)

2

]
ε̂− (67)

|L〉 = − sin(Θ)
ε̂0√
2

+ exp(−iΦ)
[
1 − cos(Θ)

2

]
ε̂+ + exp(+iΦ)

[
1 + cos(Θ)

2

]
ε̂− (68)
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Figure 4: Top view of BSPC

Only a real vector can be decomposed in the spherical basis in a consistent way. For example, |P〉 , |S〉 , &
|Z〉 are all real vectors and |R〉 & |L〉 are complex vectors; therefore their decompostions using the complex
conjugates of the irreducible basis are:

|P〉 = − sin(Θ)ε̂∗0 −
cos(Θ)√

2
exp (+iΦ) ε̂∗+ +

cos(Θ)√
2

exp (−iΦ) ε̂∗− (69)

|S〉 = − i√
2

exp (+iΦ) ε̂∗+ − i√
2

exp (−iΦ) ε̂∗− (70)

|Z〉 = + cos(Θ)ε̂∗0 −
sin(Θ)√

2
exp (+iΦ) ε̂∗+ +

sin(Θ)√
2

exp (−iΦ) ε̂∗− (71)

|R〉 = −
√

2
2

sin(Θ)ε̂∗0 +
[
1 − cos(Θ)

2

]
exp (+iΦ) ε̂∗+ +

[
1 + cos(Θ)

2

]
exp (−iΦ) ε̂∗− (72)

|L〉 = −
√

2
2

sin(Θ)ε̂∗0 −
[
1 + cos(Θ)

2

]
exp (+iΦ) ε̂∗+ −

[
1 − cos(Θ)

2

]
exp (−iΦ) ε̂∗− (73)

Note the subtle difference in the two decompositions of |R〉 & |L〉.

B Polarization Optics

B.1 Beam Splitting Polarizing Cubes

An ideal beam splitting polarizing cube (BSPC) simply splits an incoming beam into it’s two linearly
polarized components. Once separated, the two beam paths are orthogonal, see Fig. (4). The transmitted
beam is selected by

Ĉt =
[

1 0
0 0

]
(74)

and the reflected beam is selected by

Ĉr =
[

0 0
0 1

]
(75)

For the ideal case, the transmitted and reflected beams are pure P & S linear polarizations repectively. In
practice the splitting and polarizing are imperfect. According to RMI (Dr. Zhiming Lu, zlu@rmico.com,
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Figure 5: Coordinate System of a Waveplate #check#time or space convention fast axis?

Rocky Mountain Instruments, 106 Laser Drive, Lafayette, CO, 80026, 303-664-5000), our 2” BSPC has an
extinction ratio for the transmitted beam of ≥ 1000 : 1 whereas for the reflected beam it is ≤ 20 : 1. The
transmittance is about ≥ 95%, whereas the reflectance is about ≥ 99.9%. Therefore a more realistic form of
Ĉ can be written. For example, for the transmitted beam:

Ĉt =
[

t1 0
0 t2

]
(76)

Tt =
Itransmitted

IinputP
= t21 + t22 (77)

et =
ItransmittedP
ItransmittedS

=
t21
t22

(78)

where t is the transmittance and et is the extinction ratio for the transmitted beam. Solving for t1 & t2 in
terms of t & et and doing the same for the reflected beam, the more general cube matrices become:

Ĉt =

⎡
⎣

√
Tt

1+e−1
t

0

0
√

Tt

1+et

⎤
⎦ (79)

Ĉr =

⎡
⎣

√
Tr

1+er
0

0
√

Tr

1+e−1
r

⎤
⎦ (80)

Given the specifications for our cube, the matrices are:

Ĉt ≈
[

0.974 0
0 0.031

]
(81)

Ĉr ≈
[

0.213 0
0 0.951

]
(82)

The fully general cube matrices could be, in principle, complex and have nonzero off diagonal elements.

B.2 Matrix Representation of Waveplates

A waveplate is an optical element that has different indices of refraction along two orthogonal axes, see
Fig. (5). This results in a net phase shift between the linear components of the polarization vector. First,
the polarization vector has to be expressed in the basis of the waveplate. Therefore, a passive or coordinate
system rotation of angle φ radians is performed,

R̂(φ) =
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
(83)
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followed by a relative phase retardation of β radians,

Ŵ (β) =

⎡
⎣ exp

(
+iβ

2

)
0

0 exp
(
−iβ

2

)
⎤
⎦ (84)

and finally a rotation back to the orignal basis, R̂(−φ). The complete waveplate operator is thus:

Ŵ (φ, β) = R̂(−φ)Ŵ (β)R̂(φ) (85)

= exp
(
−i

β

2

) ⎡
⎣ 1 + 2i exp

(
iβ
2

)
sin

(
β
2

)
cos2(φ) i exp

(
iβ
2

)
sin

(
β
2

)
sin(2φ)

i exp
(
iβ
2

)
sin

(
β
2

)
sin(2φ) 1 + 2i exp

(
iβ
2

)
sin

(
β
2

)
sin2(φ)

⎤
⎦ (86)

Note that for one complete wave, β = 2π. Typically the fast axis is taken to be vertical.

B.3 Half Waveplate

A half-waveplate has a retardance β = 2π
2 = π. When it is orientated at an angle of φ from a set of reference

axes, the waveplate matrix becomes:

Ŵ 1
2
(φ) = i

[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
(87)

This operation implies that each linear polarization component of some arbitrarily polarized light is rotated
by twice the angle between the linear polarization axis and the waveplate fast axis. If the the linear
polarization is either S or P , then a half-waveplate at an angle φ with respect to the polarization axis
rotates the linear polarization by an angle of 2φ. A half-waveplate at ±45o simplify flips P ↔ S. For pure
circularly polarized light, a half-waveplate orientated at any angle simply flips L ↔ R.

B.4 Quarter Waveplate

For a quarter-waveplate with retardance β = 2π
4 = π

2 , orientated at an angle of 45o, the matrix becomes:

Ŵ 1
4

(π

4

)
=

√
2

2

[
1 i
i 1

]
(88)

To be explicit, a quarter-waveplate with its fast axis rotated counterclockwise by 45o turns horizontal linearly
polarized light into right circularly polarized light,

Ŵ 1
4

(π

4

)
|P〉 = |R〉 (89)

Ŵ 1
4

(π

4

)
|R〉 = i |S〉 (90)

Ŵ 1
4

(π

4

)
|S〉 = i |L〉 (91)

Ŵ 1
4

(π

4

)
|L〉 = |P〉 (92)

and so forth following the simple pattern P → R → S → L → P . An angle of −45o simply reverses the
direction of the arrows. Note that in the RHS of the two middle equations, there is an overall phase factor
(i) which for our purposes is unimportant.
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C Physical Constants and Alkali Data

Symbol Value Units Description

ge −2.002 319 304 372 unitless electron g-factor
gK −4.254 995 436 unitless 3He nuclear g-factor
μB 9.274 000 95 × 10−24 J · T−1 Bohr magneton
μN 5.050 783 4 × 10−27 J · T−1 Nuclear magneton

c 299 792 458 m · s−1 definition of the speed of light
ε0 8.854 187 817 × 10−12 C2 · N−1 · m−2 permittivity of free space
μ0 4π × 10−7 N · A−2 permeability of free space
h 6.626 069 × 10−34 J · s Planck constant

amu 1.660 538 9 × 10−27 kg 12·(atomic mass unit) = mass 12C

Table 1: Fundamental Physical Constants. [7]

Isotope Mass Natural Nuclear Magnetic g-factor
(amu) Abundance Spin, I Moment (μN ) gI(μN )

6Li 6.015 122 3 0.075 9 1 +0.822 056 +0.822 056
7Li 7.016 004 0 0.924 1 3/2 +3.256 44 +2.170 96

23Na 22.989 769 7 1.0 3/2 +2.217 52 +1.478 35

39K 38.963 706 9 0.932 58 3/2 +0.391 46 +0.260 97
40K 39.963 998 7 0.000 117 4 −1.298 −0.324 5
41K 40.961 826 0 0.067 30 3/2 +0.214 87 +0.143 25

85Rb 84.911 789 0.721 7 5/2 +1.353 02 +0.541 208
87Rb 86.909 184 0.278 3 3/2 +2.751 2 +1.834 1

133Cs 132.905 447 1.0 7/2 +2.579 +0.736 9

Reference [8] Eqn. (7)

Table 2: Alkali atom isotopic and nuclear data.
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