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1 Cross Sections and Rates

A particle passes through a finite target region filled with target points. When the particle encounters a
target point, an interaction takes place. The probability that a single interaction occurs p1 is dependant on
the target point density [N], the length of the target region l, and some factor σ that is dependant solely on
the nature of interaction:

p1 = σ[N]l → σ =
p1

[N]l
=

p1

φ
(1)

The factor σ is called the interaction cross section and has units of area. It is the probability of a single
interaction per unit target point density per unit target region length. A cross section is useful because it
isolates the part of the interaction probability that is due to the mechanism of the interaction. An equivalent
definition of cross section is the probability of interaction per unit flux, where flux φ is the number of target
points per unit cross sectional area.

The interaction rate γ is defined as the probability of an single interaction per unit time:

γ =
p1

t
=

σ[N]l
t

= σv[N] (2)

where v is the relative velocity between particle and the target points. Alternatively, this can rewritten using
the flux per unit time Φ ≡ φ

t :

γ =
p1

t
=

σφ

t
= Φσ (3)

Both forms of the interaction rate will be used.

2 Alkali Polarization

The local equilibrium alkali polarization is calculated by:

P∞
A (�r) = Plight(�r)

γop(�r)
γop(�r) + γ(�r)

(4)

where γop is the optical pumping rate, γ is the total alkali metal relaxation rate. Note that we can essentially
ignore the motion of the alkali atom during the optical pumping cycle because the alkali polarization reaches
equilibrium on a time scales much faster than that determined by it’s thermal velocity. The alkali polarization
can be thought of as spatially “frozen.” [Phys. Rev. A 58, 2282-2294 (1998)]

The optical pumping rate for monochromatic light with a frequency of ν is:

γop(�r) = Φ(�r)σ(ν) (5)
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where Φ is the number of photons per unit cross sectional area per unit time and σ is the absorption cross
section. When both the photon flux and the absorption cross section have a frequency dependence, the
optical pumping rate is generalized to:

γop(�r) =
∫ ∞

0

Φ(ν,�r)σ(ν)dν (6)

Φ(ν,�r) =
number of photons at position �r

unit cross sectional area × unit time × unit frequency interval
(7)

σ(ν) = photon absorption cross section at ν (8)

It is useful to express γ in terms of γ′se, the spin exchange rate from the noble gas to the alkali metal.
These quantities are related through the spin exchange efficiency η which is simply the ratio of the spin
exchange rate with the noble gas to the total rate of alkali relaxation [Phys. Rev. Lett. 80, 2801-2804
(1998)] and [Phys. Rev. Lett. 91, 123003 (2003)]:

η =
γ′se
γ

→ γ =
γ′se
η

(9)

Note that this γ′se is not to be confused with γse which is the spin exchange rate from the alkali metal to the
noble gas. These are calculated in the following way:

γ′se = 〈σv〉se [N] (10)
γse = 〈σv〉se [A] (11)

where 〈σv〉se is the thermal velocity averaged spin exchange cross section (also labeled as kse) and [N] & [A]
are the noble gas and alkali metal densities.

3 3He Polarization

3.1 Particle Rate Equations

Neglecting the transfer tube, a cell is composed of a pumping chamber and a target chamber. The 3He is
polarized only in the pumping chamber by contact with polarized alkali atoms in vapor form. The number
of ± helium nuclei in the pumping and target chambers, labeled by subscript, is N±

p,t. The total number of
helium nuclei in the pumping and target chamber, labeled by subscript, is Np,t = N+

p,t + N−
p,t. The total

number of helium nuclei is N = Np +Nt. The fraction of nuclei in either chamber, labeled by subscript, is
fp,t = Np,t/N .

Assuming that the alkali polarization reaches equilibrium on time scales much faster than the 3He polar-
ization build-up, then the change in the number of ± nuclei in either chamber is governed by the following
rate equations:

dN+
p

dt
= 〈σv〉se [A+]N−

p − 〈σv〉se [A−]N+
p +

(
Np

2
−N+

p

)
Γp +N+

t Dt −N+
p Dp (12)

dN−
p

dt
= 〈σv〉se [A−]N+

p − 〈σv〉se [A+]N−
p +

(
Np

2
−N−

p

)
Γp +N−

t Dt −N−
p Dp (13)

dN+
t

dt
= N+

p Dp −N+
t Dt +

(
Nt

2
−N+

t

)
Γt (14)

dN−
t

dt
= N−

p Dp −N−
t Dt +

(
Nt

2
−N−

t

)
Γt (15)

The relaxation rates Γp,t represent interactions which show no preference for either state and therefore
push equilibirum towards equal amounts of ± nuclei. The diffusion rate Dp(t) is the probability per unit time
per nucleus that a nucleus will exit the pumping (target) chamber and enter the target (pumping) chamber.
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The rate of change of the total number of particles in the two chambers is given by:

dNp

dt
=

dN+
p

dt
+
dN−

p

dt
= NtDt −NpDp (16)

dNt

dt
=

dN+
t

dt
+
dN−

t

dt
= NpDp −NtDt (17)

dN

dt
=

dNp

dt
+
dNt

dt
= 0 (18)

At particle number equilibrium, this implies:

NtDt = NpDp → ftDt = fpDp (19)

3.2 Polarization Rate Equations

Polarization is defined as:

Pp,t =
N+

p,t −N−
p,t

N+
p,t +N−

p,t

=
N+

p,t −N−
p,t

Np,t
= f+

p,t − f−
p,t (20)

N±
p,t =

1
2

(1 ± Pp,t) (21)

Combining the particle rate equations in the the appropriate way and, to reiterate, assuming that the alkali
polarization reaches equilibrium very early in the 3He polarization build-up, then the polarizations of nuclei
in the two chambers of the cell are governed by:

dPp

dt
= γse (PA − Pp) − ΓpPp −Dp (Pp − Pt) = aPp + bPt +B (22)

dPt

dt
= Dt (Pp − Pt) − ΓtPt = cPp + dPt (23)

where the following substitutions are made:

a = − (γse + Γp +Dp) (24)
b = Dp (25)
c = Dt (26)
d = − (Γt +Dt) (27)
B = γsePA (28)

Note that we are essentially averaging over the motion of the 3He atom during the spin exchange cycle
because the 3He polarization reaches equilibrium on a time scale much slower than that determined by it’s
thermal velocity. The 3He atoms essentially sample all parts of pumping chamber during the spin-exchange
process and is therefore sensitive to the volume averaged alkali polarization:

PA ≡
∫

pc

P∞
A (�r) d3r (29)

The equilibrium (t → ∞) polarizations are found by setting the rate equations to zero:

P∞
p =

B

bc− ad
(30)

P∞
t = −

( c
d

)
P∞

p (31)

The above can be written in a more illuminating form by noting that fpDp = ftDt and by some algebra:

P∞
p = PA

⎡
⎢⎣ γsefp

γsefp + Γpfp + Γtft

(
1 + Γt

Dt

)−1

⎤
⎥⎦ (32)

P∞
t = P∞

p

[
1 +

Γt

Dt

]−1

(33)
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The coupled rate equations can be rewritten as a matrix equation:

M =
[
a b
c d

]
(34)

�P =
[
Pp

Pt

]
(35)

�B =
[
B
0

]
(36)

d�P

dt
= M�P + �B (37)

This equation is solved by finding the eigenvalues of the rate matrix M. These eigenvalues are the charac-
teristic rates of the system and are labeled as slow and fast:

Γs = −1
2

[
a+ d+

√
(a− d)2 + 4bc

]
(38)

Γf = −1
2

[
a+ d−

√
(a− d)2 + 4bc

]
(39)

The solutions to the coupled rate equations are given by:

Pp(t) = P∞
p +

[
P 0

p − P∞
p − cp

]
exp (−Γst) + cp exp (−Γf t) (40)

Pt(t) = P∞
t +

[
P 0

t − P∞
t − ct

]
exp (−Γst) + ct exp (−Γf t) (41)

where P 0
p,t are set by the initial conditions. Finally, the coefficients cp,t can be obtained by satisfying the

coupled rate equations and after some algebra:

cp =
Γs

(
P∞

p − P 0
p

)− bP 0
t − aP 0

p −B

Γf − Γs
(42)

ct =
Γs

(
P∞

t − P 0
t

)− dP 0
t − cP 0

p

Γf − Γs
(43)

3.3 Fast Diffusion Limit

In the limit where the diffusion is very fast compared to all other rates, then the characteristic rates of the
system become to lowest order:

Γs = γsefp + Γpfp + Γtft + O
(

1
Dt

)
= 〈γse〉 + 〈Γ〉 (44)

Γf =
Dt

fp
+ γseft + Γpft + Γtfp + O

(
1
Dt

)
(45)

where brackets 〈〉 refer to an average over all atoms. In the limit Dp,t → ∞, the equilibrium polarizations
and coefficients become:

P∞
p → PA

[
γsefp

γsefp + Γpfp + Γtft

]
= PA

[ 〈γse〉
〈γse〉 + 〈Γ〉

]
(46)

P∞
t → P∞

p (47)

cp = fp

(
P 0

t − P 0
p

)
(48)

ct = ft

(
P 0

p − P 0
t

)
(49)

which gives for the polarizations in the two chambers:

Pp(t) = P∞
p +

[
P 0

p fp + P 0
t ft − P∞

p

]
exp (−Γst) + fp

[
P 0

t − P 0
p

]
exp (−Γf t) (50)

Pt(t) = P∞
p +

[
P 0

p fp + P 0
t ft − P∞

p

]
exp (−Γst) + ft

[
P 0

p − P 0
t

]
exp (−Γf t) (51)
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After the fast exponential has decayed away, the polarization in the two chambers evolves identitically as if
the initial polarization in the two chambers was a volume of average of the true initial polarizations in the
two chambers:

P (t) = Pp(t) = Pt(t) (52)
= P∞

p [1 − exp (−Γst)] +
[
P 0

p fp + P 0
t ft

]
exp (−Γst) (53)

= P∞ [1 − exp (−Γst)] +
〈
P 0
〉
exp (−Γst) (54)

3.4 Slow Diffusion Limit

In the limit where the diffusion is very slow compared to all other rates in the system, then the characteristic
rates of the system become to lowest order:

Γs → γp = γse + Γp +Dp + O (D2
t

)
(55)

Γf → γt = Γt +Dt + O (D2
t

)
(56)

where we have relabeled the rates with subscripts p, t instead of slow and fast which are no longer relevant.
In the limit Dp,t → 0, the equilibrium polarizations and coefficients are to lowest order:

P∞
p = PA

[
γse

γse + Γp

] [
1 − Dp

γse + Γp
+ O (D2

t

)]
(57)

P∞
t = P∞

p

[
Dt

Γt
+ O (D2

t

)]
(58)

cp =
P 0

t Dp

γse + Γp − Γt
(59)

ct = P 0
t +

(
Dt

Γt

)[
PAγse − P 0

p Γt

γse + Γp − Γt

]
(60)

which gives for the polarizations in the two chambers:

Pp(t) = P∞
p [1 − exp (−γpt)] + P 0

p exp (−γpt) +Dp

[
P 0

t

γse + Γp − Γt

]
[exp (−γtt) − exp (−γpt)] (61)

Pt(t) = P 0
t exp (−γtt)

+
(
Dt

Γt

)(
P∞

p [1 − exp (−γpt)] +

[
PAγse − P 0

p Γt

γse + Γp − Γt

]
[exp (−γtt) − exp (−γpt)]

)
(62)

4 Theoretical Maxiumum Helium-3 Polarization

4.1 Introduction

To recap, using the fast diffusion limit for a two chambered cell:

P∞
A (�r) = Plight(�r)

[
γop(�r)

γop(�r) + γ(�r)

]
(63)

P∞
H = P∞

p = P∞
t = PA

[
γsefp

γsefp + Γ

]
(64)

where:

PA ≡
∫

pc

P∞
A (�r) d3r (65)

Γ ≡ fpΓp + ftΓt (66)

fp,t =
number of 3He atoms in chamber p, t

total number of 3He atoms
(67)
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Note that the optical pumping rate and spin-exchange rate are dependent on the laser intensity and density
of alkali atoms respectively:

γop(�r) =
∫ ∞

0

Φ(ν,�r)σ(ν)dν (68)

γse = 〈σv〉se [A] (69)

In the limit of infinite laser intensity and infinite alkali density, the theoretical maximum 3He is:

Pmax
H = lim

Φ,[A]→∞
P∞

H (70)

= lim
Φ,[A]→∞

(∫
pc

Plight(�r)
[

γop(�r)
γop(�r) + γ(�r)

]
d3r

[
γsefp

γsefp + Γ

])
(71)

=
[

lim
γop(�r)→∞

∫
pc

Plight(�r)
γop(�r)

γop(�r) + γ(�r)
d3r

] [
lim

γse→∞
γsefp

γsefp + Γ

]
(72)

=
∫

pc

Plight(�r) d3r (73)

which is the volume averaged laser light polarization. From this one would expect that with sufficient
amounts of laser intensity and alkali density, the 3He polarization should saturate at ≈ 1.

However, from many years of practical experience, anecdotal evidence, and detailed optical pumping
simulations, this is simply not the case. Typically it is assumed that there are no relaxation mechanisms
that are dependant on the laser intensity

(
Φ0(�r) =

∫
Φ(ν,�r) dν

)
and alkali density ([A]):

γ = 〈σv〉A−N2
sd [N2]p + 〈σv〉A−3He

sd [3He]p + 〈σv〉A−Rb
sd [Rb]p + 〈σv〉A−K

sd [K]p + γwall−p(�r) (74)

Γp = 〈σv〉3He−N2
sd [N2]p + 〈σv〉3He−3He

sd [3He]p + Γwall−p (75)

Γt = 〈σv〉3He−N2
sd [N2]t + 〈σv〉3He−3He

sd [3He]t + 〈σv〉3He−Rb
se [Rb]t + 〈σv〉3He−K

se [K]t + Γwall−t (76)
∂γ(�r)

∂Φ0(�r) = ∂Γ
∂[A] = 0 (77)

where γ and Γ are the total alkali and 3He relaxation rates, respectively. Note that there is a very small
vapor pressure (at most less than one percent relative to the pumping chamber) of alkali atoms in the target
chamber under operating conditions. These alkali atoms are essentially unpolarized because they are not
exposed to the laser light and are very unlikely to diffuse into the pumping chamber. Therefore spin-exchange
collisions with these alkali atoms are (to a good approximation) relaxing for the helium atoms in the target
chamber.

Although we do not understand the physical mechanism underlying these extra relaxation mechanisms,
we can add phenomenological terms to account for their potential effects. It is most natural to express them
as fractions of the optical pumping and spin-exchange rates, since those rates set a useful scale to measure
against:

Xα ≡ ∂γ(�r)
∂γop(�r)

(78)

Xβ ≡ ∂Γp

∂ (γse)
(79)

Taking into account these terms gives:

P∞
A (�r) = Plight(�r)

[
γop(�r)

γop(�r) [1 +Xα(�r)] + γ0(�r)

]
(80)

P∞
H = P∞

p = P∞
t = PA

[
γsefp

γsefp [1 +Xβ] + Γ0

]
(81)

Pmax
H = lim

Φ,[A]→∞
P∞

H =

∫
pc

Plight(�r) d3r

[1 + 〈Xα〉] [1 +Xβ]
(82)

Note that Xα may have a position depedence. In the following sections, we’ll discuss what is known about
Xα and Xβ .
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4.2 Helium Laser Interaction

It is hard to imagine that there is a direct coupling between the laser light and the helium atoms. The
wavelengths that are typically used are far from any known He optical transitions. Even if there was such an
interaction, it could only effect the nuclear spin polarization of the helium through the subsequent recoupling
of the helium nucleus and helium electrons via the hyperfine interaction. In the ground state of helium, this
interaction is zero because the total angular momentum of a closed shell is zero.

4.3 Inefficient Optical Pumping

Inefficient optical pumping refers to either (1) optical pumping with unpolarized light or (2) optical pumping
unwanted transitions (D2). If we include the possibilty of pumping both the D1 and D2 transitions, then
the local equilibrium alkali polarization is calculated by:

P∞
A (�r) =

PD1−light(�r)γopD1(�r) − 1
2PD2−light(�r)γopD2(�r)

γopD1(�r) + γopD2(�r) + γ(�r)
(83)

If we pump with monochromatic D1 light and there is no light dependent relaxation, then the maximum
alkali polarization is 1.0. On the other hand, the maximum polarization pumping with pure monochromatic
D2 light is −0.5. Note that given the same sense of circular polarizaton, D2 light acts to polarize the
alkali into the state opposite relative to that of D1 pumping. Skew pumping essentially reduces the light
polarization by a factor of cos(Θ) = k̂light · B̂holding in the reference frame of the alkali atom. It also results
in more light absorption and therefore less light penetrates to the back end of the cell [Phys. Rev. A 66,
033406 (2002)]. Assuming that the D2 optical pumping rate is proportional to the D1 optical pumping rate
and that the “extra” relaxation proportional to laser intensity comes purely from inefficient optical pumping,
then in the limit of infinite laser intensity:

lim
Φ→∞

P∞
A (�r) = PD1−light(�r)

⎡
⎣cos(Θ) − PD2−light(�r)

2PD1−light(�r)
γopD2(�r)
γopD1(�r)

1 + γopD2(�r)
γopD1(�r)

⎤
⎦ = PD1−light(�r) [1 +Xα]−1 (84)

If we assume that the skew angle Θ is small, the degree of circular polarization of both D1 and D2 light is
the same, and that the D2 pumping rate is small relative to the D1 pumping rate, then Xα due to inefficient
optical pumping is:

Xα ≈ Θ2

2
+

3
2

[
γopD2(�r)
γopD1(�r)

]
(85)

In practice, it is very difficult to get Θ < 1.0o. On the other hand, Θ ≈ 10o is a very conservative upper
estimate for the skew angle, the effect on the local alkali polarization is:

0.00015 < Xα ≈ Θ2

2
< 0.015 (86)

Note that the “global” effect of skew optical pumping on the helium polarization is larger because it is
sensitive to the volume averaged alkali polarization (or equivalently the cumulative effect of many “local”
inefficiencies). The “global” effect can only be understood by a full optical pumping simulation. This only
increases amount of laser intensity required to maintain a “high” alkali polarization. It limits the highest
attainable alkali polarization only through the cos(Θ) term.

To estimate the effect of D2 pumping, we’ll assume that the laser light distrubution is gaussian:

Φ(ν,�r) = Φ0(�r)G(ν) (87)

G(ν) =
1

σl

√
2π

exp

(
− (ν − νl)

2

2σ2
l

)
(88)

lim(
σl
νl

)
→0

∫ ∞

0

G(ν)dν = 1 (89)
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The absorption cross section is lorentzian when dominated by pressure broadening:

σ1,2 = f1,2σ0L(ν) (90)

L(ν) =
1
π

Γ1,2
2

(ν − ν1,2)
2 +

(
Γ1,2
2

)2 (91)

lim(Γ1,2
ν1,2

)
→0

∫ ∞

0

L(ν)dν = 1 (92)

where f1,2 = 1.5∓0.5
3 is the oscillator strength. For theD1 pumping, we’ll assume that the emission bandwidth

of the laser is much larger that the absorption linewidth, σl 	 Γ1:

γopD1(�r) ≈ lim
Γ1
σl

→0

∫ ∞

0

Φ(ν,�r)σ1(ν)dν (93)

≈ Φ0(�r)f1σ0

∫ ∞

0

[
lim

Γ1
σl

→0

L(ν)G(ν)

]
dν (94)

≈ Φ0(�r)f1σ0

∫ ∞

0

G(ν)δ(ν − ν1)dν (95)

≈ Φ0(�r)f1σ0G(ν1) (96)

For the D2 pumping, the absorption peak is in the tail of the emission bandwidth and vice versa. Therefore
if we make the assumption that the separation of the two peaks is much larger than either width , Γ2

ν2−nul



σl

ν2−νl

 1 , then we can split the integral, νl < νa < ν2:

γopD2(�r) ≈ lim
Γ2
σl

→0

∫ ∞

0

Φ(ν,�r)σ2(ν)dν (97)

≈ Φ0(�r)f2σ0

∫ ∞

0

⎡
⎣ lim

Γ2 or σl
ν2−νl

→0

L(ν)G(ν)

⎤
⎦ dν (98)

≈ Φ0(�r)f2σ0

(∫ νa

0

[
lim

σl
ν2−νl

→0
L(ν)G(ν)

]
dν +

∫ ∞

νa

[
lim

Γ2
ν2−νl

→0

L(ν)G(ν)

]
dν

)
(99)

≈ Φ0(�r)f2σ0

(∫ νa

0

L(ν)δ(ν − νl)dν +
∫ ∞

νa

δ(ν − ν2)G(ν)dν
)

(100)

≈ Φ0(�r)f2σ0 [L(νl) +G(ν2)] (101)

Therefore, an estimate of the effect of inadvertent D2 pumping is given as:

Xα ≈ 3f2
2f1

(
G(ν2) + L(νl)

G(ν1)

)
(102)

We will take the laser emission to be centered on the D1 line, νl = ν1. Using typical values for optical
pumping of Rb:

ν2 − ν1 = νso = c

(
1

780 nm
− 1

795 nm

)
≈ 7 × 103 GHz (103)

Γ2 = 〈σv〉pb [3He] ≈
(

20
Ghz
amg

)
(7 amg) = 140 GHz (104)

σl ≈ 1 nm ≈ 500 GHz (105)

gives the following estimates (in units of GHz−1):

G(ν1) =
1

σl

√
2π

≈ 8 × 10−4 (106)
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G(ν2) =
1

σl

√
2π

exp

(
− (ν2 − νl)

2

2σ2
l

)
≈ 10−32 (107)

L(ν1) =
1
π

Γ2
2

(ν1 − ν2)
2 +

(
Γ2
2

)2 ≈ 5 × 10−7 (108)

Xα ≈ 3
(
G(ν2) + L(νl)

G(ν1)

)
≈ 3σlΓ2

ν2
so

√
2π

≈ 2 × 10−3 (109)

where ν2 − ν1 is just the spin orbit splitting νso. Note that the contribution from of the laser light intensity
at the D2 resonance (G(ν2)) is very small compared to the contribution of the D2 absorption cross section
at the center of laser emission spectrum L(νl).

Another source of inefficiency comes from the possible reabsorption of D1 and D2 fluorescence. The rate
equations that govern the populations of the S 1

2
, P 1

2
, and P 3

2
are given by:

ṡ = −γops+ (γrad + γnon) (p1 + p2) (110)
ṗ1 = +γops− (γrad + γnon) p1 + γmix (p2 − p1) (111)
ṗ2 = − (γrad + γnon) p2 + γmix (p1 − p2) (112)

where γop is the D1 pumping rate, γrad is the radiative quenching rate, γnon is the non-radiative quenching
rate, γmix is the collisional mixing rate, and s, p1, p2 are the relative populations of the S 1

2
, P 1

2
, and P 3

2
states

respectively. Note that we have dropped the position dependence, assumed that there is little D2 pumping,
and assumed that both quenching rates and the collisional mixing rates are the same for both P states. At
equilibrium, this gives:

s =
γrad + γnon

γrad + γnon + γop
(113)

p1 + p2 =
γop

γrad + γnon + γop
(114)

p1 − p2

p1 + p2
=

γrad + γnon

γrad + γnon + 2γmix
(115)

p1

p2
= 1 +

γrad + γnon

γmix
(116)

(117)

Assuming that every fluorescense photon is unpolarized, the local relaxation rate due to reabsorption is
estimated by:

γf =
∫

Φf(ν)σ(ν)dν (118)

= Φ0
f

∫
σ2(ν)dν∫
σ(ν)dν

(119)

Φ0
f = γrad[A]

[
γop

γrad + γnon + γop

] [
γrad

γrad + γnon

]
l (120)

≈ γop

∫
σ(ν)dν∫
σ2(ν)dν

[
γrad

γrad + γnon

]2
(121)

〈l〉−1 ≡ [A]
∫
σ2(ν)dν∫
σ(ν)dν

(122)

where the fluorescence intensity is given as the radiative decay rate times the alkali density times the fraction
of atoms in the excited state times the fraction of atoms that undergo radiative decay times the average
absorption length (l) and we’ve taken advantage of the relative sizes of the different rates [RMP 44 p169-249
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(1972)]:

γrad =
γrad−D1 + γrad−D2

2
=
〈
τ−1
spon

〉
= (27 ns)−1 ≈ 40 MHz (123)

γnon ≈
[
σqD1 + σqD2

2

]
〈vN2−Rb〉 [N2] =

(
50 × 10−20 m2

) (
700

m
s

)
(0.08 amg) ≈ 750 MHz (124)

γmix ≈
[
σmD1 + σmD2

2

]
〈vN2−Rb〉 [N2] =

(
20 × 10−20 m2

) (
700

m
s

)
(0.08 amg) ≈ 300 MHz (125)

γop ≈ 1 to 103 kHz depending on initial laser power and position in cell (126)

Note that the wavelength distribution of the fluorescence light is same as the absorption cross section.
Therefore we can estimate the effect of fluorescence reabsorption:

γf = γop

[
γrad

γrad + γnon

]2
→ Xα ≈

[
γrad

γrad + γnon

]2
≈ 2.5 × 10−3 (127)

This is admittedly a very crude estimate, but it is almost certainly good to within one order of magnitude.
From skew pumping, inadvertent D2 pumping, and fluorescence reabsorption, this gives a total estimate of:

Xα ≈ Θ2

2 + 3σlΓ2

ν2
so

√
2π

+
[

γrad
γrad+γnon

]2
(128)

0.002 < Xα < 0.02 (129)

In comparison to experiment, [Phys. Rev. Lett. 91, 123003 (2003)] gives Xα ≈ 0.0027 in some hybrid cells
they tested.

4.4 Extra Spin-Exchange Related Couplings

Normally the alkali atom-helium nucleus interaction is written as (in SI) [Walker & Happer, RMP 69, p629
(1997)]:

Hse = −
[
μ0

4π
8π
3
δ(�R)

]
geμBg3HeμN

�S · �K (130)

where �R is the separation between the alkali atom valence electron and the helium nucleus. The spin
exchange cross section is proportional to the modulus square matrix element of this interaction. Since the
alkali atom is much larger than the helium atom, we can evaluate the matrix element of the interaction using
the alkali atom wave functions:

σse ∝
[
μ0

4π
8π
3
geμBg3HeμN

]2
| 〈ψ| δ(�R) |ψ〉 |2 =

[
2μ0

3
geμBg3HeμN

]2
|ψ(0)|2 (131)

This form of the interaction hamiltonian is incomplete. In principle, the “full” interaction hamiltonian
is [Jackson, Classical Electrodynamics, 3rd ed, pages 188-90 (1999)]:

Hfull = −�μ3He ·
(
�Bspin + �Borbital

)
(132)

�Bspin =
μ0

4π

[
3n̂ (n̂ · �μelectron) − �μelectron

R3
+

8π
3
�μelectronδ(�R)

]
(133)

�Borbital =
μ0

2π
μB

R3
�L (134)

The interaction hamiltonian now contains three terms:

Hfull = Hse + Hani + Hoam (135)

Hani = −μ0

4π
geμBg3HeμN

⎡
⎣3
(
�n · �S

)(
�n · �K

)
−R2�S · �K

R5

⎤
⎦ (136)

Hoam = −μ0

2π
μBg3HeμN

R3
�L · �K (137)
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The anisotropic term is the interaction between the long range dipolar field of the electron spin with the
helium nucleus. In the literature [D. K. Walter, W. Happer, and T. G. Walker, Phys. Rev. A 58, 3642-3653
(1998)], it is referred to “Anisotropic Spin Exchange.” It acts to polarize the the nuclear spin in an orientation
opposite to that of the usual or “isotropic” spin-exchange interaction. The effect of this interaction can be
written as [RMP 69]:

Xβ ≈
∫ [

3 �R′·R̂R̂· �R′−R′2
R′5

]
|ψ(R′)|2d3R′

16π2

9 |ψ(0)|2 ≤ 0.025 (138)

where the estimate comes from [PRA 58, 3642 (1998)]]. This point is discussed in [PRA 66, 032703 (2002)].
Essentially they argue that since the calculation in [PRA 58, 3642 (1998)] correctly estimates the size of
the “isotropic” spin exchange rate constant (within 20 percent), their estimate of the “anisotropic” spin
exchange rate constant must be roughly as good. Therefore it contributes only a small amount to Xβ.

For the ground state atoms, only the isotropic and anisotropic spin exchange terms contribute because
�L = 0 in the ground state. However, the excited states have �L > 0 and therefore the orbital angular
momentum term has a contribution. As was mentioned in the previous section, a small fraction (at the
level of 1-1000 ppm) of the alkali atoms are in the excited state. These excited states atoms are probably
not polarized due to collisional mixing. Therefore any interaction between these excited atoms and helium
nuclei are probably spin relaxing. The effect of orbital angular momentum interaction can be written as:

Xβ ≈
[

γop

γrad + γnon

] ∫ |ψ 1
2
(R)|2 + |ψ 3

2
(R)|2 d3R

2R3

16π
9 g2

e |ψ(0)|2 (139)

where we assume that the excited atoms are equally distributed between P 1
2

and P 3
2

states.

4.5 Helium Spin-Rotation Interaction

The helium nuclear spin can couple to the angular momentum of the alkali atom helium atom pair rotating
about a common axis:

Hrot = f(R) �N · �K (140)

For He-alkali collisions, the rotational angular momentum �N couples much more strongly to the electron
spin than to the helium nuclear spin [Phys. Rev. A 56, 2090-2094 (1997)]. Therefore it is assumed that this
effect is negligible.

4.6 Wall Interactions

A series of studies have been done to understand the wall relaxation in helium cells. In studies where the
lifetime of cell have been measured, it has been found:

1. Alkali coated cells are better than bare wall cells. [PLA 201, p337-43 (1995)]

2. Sol gel coatings appears to increase the lifetimes as well as reduce their variation. [Appl Phys Lett,
77, p2069-71 (2000)]

3. Bare wall cells do not exhibit magnetic hysterisis. [PRL 87, 143004 (2001)] [J App Phys, 92, p1588-97
(2002)] [Chem Phys Lett, 370, p261-7 (2003)] [PRA 69, 021401 (2004)] [Physica B, 356, p 91-95 (2005)]

4. Alkali coated cells exhibit hysterisis. [ibid]

5. Alkali coated cells can be degaussed. [ibid]

Recently [Jour. App. Phys., 94, pp. 6908-14 (2003)] and [Phys. Rev. Lett. 96, 083003 (2006)] have shown:

1. The alkali polarization is quite often ≈ 1, therefore Xα ≈ 0.

2. There is an unaccounted for helium relaxation rate that appear proportional to the alkali density and
surface to volume ratio.
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3. They found the range 0.15 < Xβ < 1.3.

4. For small surface to volumes ratios, there is less scatter in Xβ.

5. For large surface to volumes ratios, there is larger scatter in Xβ .

6. For the cells with the largest Xβ for a particular value of surface to volume ratio S
V :

0.15 ≤ Xβ ≤ Xmax
β ≈ (0.4 cm)

S

V
(141)
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