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1 Introduction

Both the Ra EDM Experiment and the Noble Gas Ice Project involve very sensitive mea-

surements that require, among other things, very stable magnetic fields. One source of

magnetic field instablility that could potentially limit the sensitivity of these experiments

is the Johnson-Nyquist noise [1, 2] from conducting materials near the detection region.

Thermal agitation (i.e. energy fluctuations) of the charge carriers inside conductors give

rise to this electronic noise with a nearly frequency-independant spectral power density

of:
dPn

dν
= 4kT ↔ dPn

dω
=

2kT
π

(1)

where k = 1.38×10−23 J/K is the Boltzmann constant, T is the temperature in Kelvin, and

ω = 2πν. A derivation of this equation as well as a discussion of its frequency dependence

is given in [3]. The relationship between Johnson noise and Shot noise is given in [4].

By noting that the power dissipated by a resistor is given P = V2/R = I2R, we can

rewrite the noise spectrum in terms of the root mean square (RMS) voltage fluctuations

across a resistor as:

√
V2

n =

√
dV2

n

dν
(∆ν) =

√
4kTR(∆ν) (2)

or, alternatively, the RMS current noise traversing the resistor as:

√
I2
n =

√
dI2

n

dν
(∆ν) =

√
4kT(∆ν)

R
(3)

where R is the resistance and ∆ν is the bandwidth. This current noise generates a mag-

netic field noise spectrum that, in general, depends on the geometry of & distance from

the conductor and the frequency. In this document, we’ll derive a set of equations that are

subsequently used to estimate the effect the Johnson noise on the Ra EDM Experiment,

see Sec. (3.1), and the Noble Gas Ice Project, see Sec. (3.2).
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2 Magnetic Noise Spectrum

2.1 Inifinite Conducting Slab in the Dynamic Case

According to Eqn. (3), the current noise spectral density (dI2
n/dν) is frequency indepen-

dant. For sufficiently low frequencies, this results in magnetic noise that is also frequency

independant. However, for high frequencies, the current noise dynamically generates

compensating eddy currents that reduce the overall magnetic noise. Varpula & Poutanen

[5] attempted to model the full frequency dependance of the magnetic noise by combin-

ing Eqn. (3) with Maxwell’s equations. Based on semi-analytic calculations, they found

an approximate expression for the magnetic noise density at a distance z from the closest

surface of an infinite conducting plane with thickness d = sz:

dB2
n,z

dν
=

[
µ2

0kT
8πρ

][
s

z(1 + s)

][
1

1 + (ν/νc)2

]
= 2

(
dB2

n,x

dν

)
= 2

(
dB2

n,y

dν

)
(4)

=
[

38.9 nG√
Hz

]2 [ T
298 K

][
ρCu(298 K)

ρ(T)

][
1 mm

z

][
s

1 + s

][
1

1 + (ν/νc)2

]

where
√

B2
n,q is the RMS magnetic noise in the q direction, the magnetic permeability of

the plane is taken to be the magnetic constant µ0 = 4π×10−7 T ·m/A, ρ is the resistivity of

the plane, ρCu(298 K) = 1.71×10−8 Ω ·m is the resistivity of Copper at room temperature,

the x & y directions lie in the plane, the z direction is normal to the plane, and νc is the

characteristic frequency is given by:

νc =
πρ

8µ0z2s
=
[

5.34 kHz
s

][
ρ(T)

ρCu(298 K)

][
1 mm

z

]2

(5)

Munger [6] and Lee & Romalis [7] discuss this frequency dependence and its relationship

to the magnetic permeablility µ of various materials when µ 6= µ0. Based on symme-

try considerations, Varpula & Poutanen also noted the following relationship among the
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different field noise compoments:

dB2
n,x

dν
=

dB2
n,y

dν
=

1
2

(
dB2

n,z

dν

)
(6)

As we’ll show in the next section, this is not consistent with a numerical integration of

the relevant equations.

We can calculate the flux noise in a loop that lies in the xy-plane but displaced a dis-

tance z from the surface of the conductor by multiplying the RMS magnetic field noise by

the area of the loop a to give:

dΦ2
n,z

dν
= a2

(
dB2

n,z

dν

)
=
[
µ2

0kTa2

8πρ

][
s

z(1 + s)

][
1

1 + (ν/νc)2

]
(7)

=
[

0.188 ·Φ0√
Hz

]2 [ a
1 cm2

]2
[

T
298 K

][
ρCu(298 K)

ρ(T)

][
1 mm

z

][
s

1 + s

][
1

1 + (ν/νc)2

]

where Φ0 = 207 nG · cm2 is the magnetic flux quantum.

Since there is a frequency rolloff to the noise spectrum, the total noise integrated over

an infinite bandwidth is finite and is given by:

√
B2

n,z =

√Z ∞

0

dB2
n,z

dν
dν =

√
πµ0kT

128z3(1 + s)

=
3.56 µG√

1 + s

√[
T

298 K

][
1 mm

z

]3

(8)

√
Φ2

n,z = a
√

B2
n,z =

√
πµ0kTa2

128z3(1 + s)

=
17.2 ·Φ0√

1 + s

[ a
1 cm2

]√[ T
298 K

][
1 mm

z

]3

(9)

It is interesting to note that the total integrated noise is independant of the resistivity of

the material. Furthermore, by limiting the bandwidth to a few Hz (by integrating the

signal over a few seconds), the noise can be reduced by at least two orders of magnitude.
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An infinite plane conductor can be used to model a finite conductor when the distance

z is much smaller than the thickness of the conductor (i.e. s� 1). In this case, the details of

the spatial geometry of the conductor are only a first order correction (1/s) to the magnetic

noise at low frequency (i.e. ν � νc) and s is interpreted as:

s =
characteristic size of the conductor

characteristic distance from the surface of the conductor
(10)

On the other hand, the characteristic frequency νc is always inversely proportional to s,

which implies that, at a fixed distance, the noise rolls off at a lower frequency for larger

conductors.

2.2 Arbitrary Geometries in the Quasistatic Case

In general, it is quite difficult to follow the prescripton of Varpula & Poutanen for arbi-

trary geometries. However, as pointed out by Lamoreux [8], calculating the noise density

at zero frequency (i.e. ν � νc) always provides a conservative upper limit for the noise

density at all frequencies. In this case, called the quasistatic case, we ignore the effect of

eddy currents and are able to directly apply the Biot-Savart Law to calculate the magnetic

field from a steady state current distribution:

d~B(~r) =
µ0

4π

[
Id~̀× (~r− ~u)
|~r− ~u|3

]
(11)

where ~B(~r) is the magnetic field at the location~r, I is the current, and d~̀ is the line element

in the direction of the current at the location ~u. This integral over d~̀ is assumed to be zero

for randomly fluctuating noise currents.

On the other hand, the RMS magnetic field is not expected to be zero and each com-
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ponent can be written as:

dB2
3 =

µ2
0

16π2

[
{I1d`1 (r2 − u2)− I2d`2 (r1 − u1)}2

|~r− ~u|6

]
(12)

=
µ2

0

16π2

[
I2
1 (d`1)2 (r2 − u2)2 + I2

2 (d`2)2 (r1 − u1)2 − 2I1 I2(d`1)(d`2)(r1 − u1)(r2 − u2)
|~r− ~u|6

]

where Iq is the current in the q direction and the subscripts q = 1,2,3 label the component

of the vectors such that 1̂× 2̂ = 3̂. The randomly fluctuating noise currents in two different

directions are assumed to be completely uncorrelated. Therefore, the cross term (i.e. I1 I2)

is assumed to integrate to zero and only the quadratic terms (i.e. I2
1 , I2

2 ) survive. The

field noise density can be written in terms of the current noise density, which, in the q

direction, is given by:
dI2

n,q

dν
=

4kT
Rq

=
4kT
ρ

(
dAq

d`q

)
(13)

where Rq is the resistance in the q direction, d`q is the length in the q direction, and dAq

is the cross sectional area normal to the q direction. Plugging this into Eqn. (12) and

dropping the cross terms (as argued before), we find that the q component of the field

noise density is given by:

dB2
n,q

dν
=
(

µ2
0kT

4π2ρ

)Z ∣∣∣∣ (~r− ~u)× q̂
|~r− ~u|3

∣∣∣∣2 d3u ∝ TV
ρd4 (14)

where d3u = (d`x)(d`y)(d`z), V is the volume of the conductor, and d is the effective dis-

tance from the conductor. Note that as V →∞, such as in the case of an infinite plane

conductor, d3 →∞ at the same rate and we rederive the result that the field noise scales

as 1/
√

d. Incidentally, a numerical integration of this equation suggests that, contrary to

the conclusion of Varpula & Poutanen, the three components of the magnetic field noise
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due to an infinite plane are related by:

(
dB2

n,x

dν

)
=

(
dB2

n,y

dν

)
≈ 3

2

(
dB2

n,z

dν

)
(15)

A quick and dirty approach to calculating the flux noise density is to simply multiply

Eqn. (14) by the square of the effective area of the pickup coil. For a more sophisticated

estimate, we’ll start by either representing the flux using the Biot-Savart Law or in terms

of the magnetic vector potential ~A:

Φ =
Z

~B(~r) · d~a =
µ0

4π

Z I Id~̀× (~r− ~u) · d~a
|~r− ~u|3

=
I

~A(~r) · d~s =
µ0

4π

I I Id~̀ · d~s
|~r− ~u| (16)

where d~a is an element of area vector at a location ~r inside the loop or d~s is the line ele-

ment of the boundary that encloses the flux at a location ~r. By following the same line of

reasoning as before (i.e. terms involving the product of current components I j Ik integrate

to zero unless j = k), we find that the flux noise density is given by:

dΦ2
n

dν
=
(

µ2
0kT

4π2ρ

)Z ∣∣∣∣Z (~r− ~u)× d~a
|~r− ~u|3

∣∣∣∣2 d3u =
(

µ2
0kT

4π2ρ

)Z ∣∣∣∣I d~s
|~r− ~u|

∣∣∣∣2 d3u ∝ TVa2

ρd4 (17)

where a is the total area enclosed by the loop and d is the effective distance between the

noise source and the loop. Note that as V →∞, such as in the case of an infinite plane

conductor, d3 →∞ at the same rate and we rederive the result that the flux noise scales

as a/
√

d. On the other hand, as a →∞, such as when the coil is much larger than the

conductor, d2 →∞ at the same rate and we find that the flux noise scales as
√

V. Finally,

we’ll note the following useful scale factors:

µ2
0kT

4π2ρ
=
[

9.81 nG√
Hz

]2 [ T
298 K

][
ρCu(298 K)

ρ(T)

]
· cm =

[
0.0474 ·Φ0√

Hz

]2 [ T
298 K

][
ρCu(298 K)

ρ(T)

]
· cm−3

(18)
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3 Numerical Results

3.1 Ra EDM Experiment

The Radium EDM Experiment is a search for the permanent electric dipole moment

(EDM) of the Ra-225 nucleus. Laser-cooled & trapped Ra atoms are spin-polarized by

optical pumping transverse to a small (≈ 10−2 G) bias DC magnetic field. As a conse-

quence, the Ra atoms precess freely about the magnetic field at the Larmor frequency

(≈10 Hz). The experimental observable is the small shift in this Larmor frequency which

could be produced by the coupling of a nonzero EDM to a strong (≈102 kV/cm) DC elec-

tric field. This shift can be isolated by reversing the sign of the electric field relative to the

magnetic field.

In order to perform a competitive EDM experiment (|d|< 10−26 e · cm), we will achieve

an integrated relative statistical uncertainty on the frequency shift of 0.1 ppm. This will

be accomplished by 104 frequency shift measurements, each with a relative statistical

uncertainty of (0.1 ppm)
√

104 = 10 ppm [9]. The statistical precision of each measurement

of the frequency shift improves linearly with (1) the number of atoms N (for small N)

and (2) the observation time T [10]. In order to achieve this statistical precision, we have

estimated that each measurement should consist of N≈ 104 atoms with Tobs ≈ 102 seconds

[11].

The main source of magnetic Johnson noise are the two electrodes used to generate

the electric field. These electrodes are separated by 2 mm, while the Ra atoms are lo-

cated directly in the center between them. Combining this geometry with the dimen-

sions depicted in Fig. (1), we obtain the following results via numerical integration with

4× (2× 100 + 1)× (642) volume elements per electrode:

Z ∣∣∣∣ (~r− ~u)× x̂
|~r− ~u|3

∣∣∣∣2 d3u =
Z ∣∣∣∣ (~r− ~u)× ŷ

|~r− ~u|3

∣∣∣∣2 d3u =
42.4
cm

Z ∣∣∣∣ (~r− ~u)× ẑ
|~r− ~u|3

∣∣∣∣2 d3u =
25.7
cm

(19)
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Figure 1: Electrode Dimensions. The electrodes are made from copper [12].

Assuming the electrodes are made of copper & are held at room temperature (T = 298 K)

and the atoms are observed for Tobs = 102 sec (∆ν = 1/Tobs = 0.01 Hz), we find:

√
B2

n,x =
√

B2
n,y =

63.9 nG√
Hz

√
1

100 s
= 6.39 nG

√
B2

n,z =
49.7 nG√

Hz

√
1

100 s
= 4.97 nG (20)

This corresponds to fluctuations of the bias DC field (≈10−2 G in the z-direction) of 0.5

ppm, which is well below the desired per-measurement statiscal precision of 10 ppm.

Since ρTi/ρCu = 23.2, the relative frequency uncertainty due to Titantium electrodes of the

same geometry is about 0.1 ppm.

We can also perform this calculation for a austentic stainless steel tube with a length

of 160 cm, radius of 3.5 cm, and a wall thickness of 5 mm. At the center of the tube, the

spatial integrals ((2× 800 + 1)× 352) for the magnetic noise are 0.294/cm in the radial

direction and 0.353/cm along the axis of the tube. For this geometry, the magnetic noise,

using ρSS/ρCu = 44.1, is 0.8 nG/
√

Hz, which corresponds to 8 ppb after 102 sec.
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3.2 Nobel Gas Ice Project

One of the near-term goals of the Noble Gas Ice Project is to demonstrate the viability

of matrix-isolated diamagnetic atoms with nonzero nuclear spins as a “next-generation”

tool for nuclear EDM searches. The major potential benefit of this approach would be

the increased statistical sensitivity to the EDM signal due to the orders of magnitude

higher number of atoms in the sample relative to the sample size of traditionally optically-

trapped atomic species. Once polarized, the nuclear spins are expected to retain their

nonthermal polarization for a very long time, which is ideal for an EDM search. Towards

this end, we have chosen to demonstrate the proof-of-principle of this approach with

Ytterbium (Yb) atoms embedded in a solid-Neon (s-Ne) matrix.

Our goal is to optically pump Yb atoms while embedded in the s-Ne matrix and de-

tect the resulting magnetization due to the nuclear spin polarization of Yb-171 in natural

abundance Yb. Our planned detection technique takes advantage of the coupling be-

tween this magnetization and a “pickup” coil as measured by a SQUID. In a previous

note, [13], assuming a natural abundance Yb to Ne ratio of [Yb]/[Ne] = 10−5, a 100% Yb-

171 nuclear polarization, a 1 cm diameter sample with a 30 µm thickness, and a 1 cm

diameter coil, we calculated that the flux measured by a single loop coil 2 mm from the

sample would be about 15.1 mΦ0. HERE A potentially major source of noise that may

overwhelm this small signal is the magnetic Johnson from the metal components

A Noise, Observation Time,
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