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Abstract

An attempt to calculate the minimum laser power needed for optical pumping. Also some rate
equation stuff.
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1 Cross Sections and Rates

A particle passes through a finite target region filled with target points. When the particle encounters a
target point, an interaction takes place. The probability that a single interaction occurs p1 is dependant on
the target point density [N], the length of the target region l, and some factor σ that is dependant solely on
the nature of interaction:

p1 = σ[N]l → σ =
p1

[N]l
=

p1

φ
(1)

The factor σ is called the interaction cross section and has units of area. It is the probability of a single
interaction per unit target point density per unit target region length. A cross section is useful because it
isolates the part of the interaction probability that is due to the mechanism of the interaction. An equivalent
definition of cross section is the probability of interaction per unit flux, where flux φ is the number of target
points per unit cross sectional area.

The interaction rate γ is defined as the probability of an single interaction per unit time:

γ =
p1

t
=

σ[N]l
t

= σv[N] (2)

where v is the relative velocity between particle and the target points. Alternatively, this can rewritten using
the flux per unit time Φ ≡ φ

t :

γ =
p1

t
=

σφ

t
= Φσ (3)

Both forms of the interaction rate will be used.

2 Alkali

The equilibrium alkali polarization is calculated by:

PA =
γop

γop + γ
(4)
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where γop is the optical pumping rate and γ is the total alkali metal relaxation rate. It is useful to express
γ as in terms of γ′

se, the spin exchange rate from the noble gas to the alkali metal. These quantities are
related through the spin exchange efficiency η which is simply the ratio of spin exchange rate with the noble
gas to the total rate of alkali relaxation:

η =
γ′

se

γ
→ γ =

γ′
se

η
(5)

Note that this γ′
se is not to be confused with γse which is the spin exchange rate from the alkali metal to

the noble gas. These are calculated in the following way:

γ′
se = 〈σv〉se [N] (6)

γse = 〈σv〉se [A] (7)

where 〈σv〉se is the velocity averaged spin exchange cross section and [N] & [A] are the noble gas and alkali
metal densities.

The optical pumping rate for monochromatic light with a frequency of ν is:

γop = Φσ (8)

where Φ is the number of photons per unit cross sectional area per unit time and σ is the absorption cross
section. When both the photon flux and the absorption cross section have a frequency dependance, the
optical pumping rate is generalized to:

γop =
∫ ∞

0

Φ(ν)σ(ν)dν (9)

Φ(ν) =
number of photons

unit cross sectional area × unit time × unit frequency interval
(10)

σ(ν) = photon absorption cross section atν (11)

The photon absorption cross section σ(ν) is given by a Lorentzian line shape L(ν):

σ(ν) =
(π

2
Γ1σ1

)[ 1
π

Γ1
2

(ν − ν1)
2 +

(
Γ1
2

)2
]

(12)

=
π

2
Γ1σ1L(ν) (13)

L(ν) =
1
π

Γ1
2

(ν − ν1)
2 +

(
Γ1
2

)2 (14)

(15)

such that:

lim(
Γ1
ν1

)
→0

∫ ∞

0

L(ν)dν = 1 (16)

∫ ∞

0

σ(ν)dν =
π

2
Γ1σ1 (17)

σ(ν1) = σ1 (18)

Under our conditions, Γ1
ν1

= 160 GHz
3.8×105 GHz = 4× 10−4 ≈ 0, so the Lorentzian lineshape has unit normalization.

It is straight forward to show that the (17) can be related to the oscillator strengh of the transition f by the
sum rule (See Merzbacher): ∫ ∞

0

σ(ν)dν = πrecf1 (19)

πrecf1 =
π

2
Γ1σ1 (20)

σ1 =
2recf1

Γ1
(21)
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The photon flux Φ(ν) is given by a Gaussian lineshape G(ν):

Φ(ν) =
φ2

σ2

√
2π

exp

(
− (ν − ν2)

2

2σ2
2

)
(22)

= φ2G(ν) (23)

G(ν) =
1

σ2

√
2π

exp

(
− (ν − ν2)

2

2σ2
2

)
(24)

such that:

lim(
σ2
ν2

)
→0

∫ ∞

0

G(ν)dν = 1 (25)

∫ ∞

0

Φ(ν)dν = φ2 (26)

Φ(ν2) =
φ2

σ2

√
2π

(27)

The photon flux is related to the intensity of the light I(ν) used for optical pumping:

I(ν) = hνΦ(ν) (28)

lim(
σ2
ν2

)
→0

∫ ∞

0

I(ν)dν = I2 = hν2φ2 (29)

I(ν2) =
hν2φ2

σ2

√
2π

(30)

φ2 =
I2

hν2
(31)

Under our conditions, Γ1
ν1

= 430 GHz
3.8×105 GHz = 1.1×10−3 ≈ 0, so the Gaussian lineshape has unit normalization.

Putting all this toghether, the optical pumping rate is:

γop =
∫ ∞

0

Φ(ν)σ(ν)dν (32)

=
∫ ∞

0

[φ2G(ν)]
[π
2

Γ1σ1L(ν)
]
dν (33)

=
(

I2

hν2

)
(πrecf1)

∫ ∞

0

G(ν)L(ν)dν (34)

=
(

I2πrecf1

hν2

)
G(ν2)

∫ ∞

0

G(ν)
G(ν2)

L(ν)dν (35)

=
(

I2πrecf1G(ν2)
hν2

)
L(ν1, ν2) (36)

=
√

π

2

(
I2recf1

hν2σ2

)
L(ν1, ν2) (37)

where we have defined the unitless lineshape factor L:

L(ν1, ν2) =
∫ ∞

0

G(ν)
G(ν2)

L(ν)dν (38)

lim(
Γ1
σ2

)
→0

L(ν1, ν2) =
1

G(ν2)

∫ ∞

0

⎡
⎣ lim(

Γ1
σ2

)
→0

(G(ν)L(ν))

⎤
⎦dν (39)
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=
1

G(ν2)

∫ ∞

0

G(ν)δ(ν − ν1)dν =
G(ν1)
G(ν2)

(40)

= exp

[
− (ν1 − ν2)

2

2σ2
2

]
(41)

Under our conditions, Γ1
σ2

= 160 GHz
430 GHz = 0.35 ≈ 0, so the lineshape factor is of order one. Numerically

integrating (38) under typical conditions, L(ν1, ν1) ≈ 0.87.
If the beam is gaussian, then φ2 has a radial dependance given by:

φ2(r) =
P0

hν2

2
w2π

exp
(
−2r2

w2

)
(42)∫ ∞

0

2πr (hν2φ2(r)) dr = P0 (43)

As the laser beam propagates through the cell, the light is attenuated by absorption given by:

Φ(ν, r) = φ2(r)G(ν) =
P0

hν2

[
2

w2π
exp

(
−2r2

w2

)][
1

σ2

√
2π

exp

(
− (ν − ν2)

2

2σ2
2

)]
(44)

∂Φ(ν, r)
∂z

= − [Rb] (1 − P )σ(ν)Φ(ν, r) (45)∫ ∞

0

∂Φ(ν, r)
∂z

dν = − [Rb] (1 − P )
∫ ∞

0

σ(ν)Φ(ν, r)dν (46)

∂φ2(r)
∂z

= − [Rb] (1 − P )φ2(r)
∫ ∞

0

π

2
Γ1σ1L(ν)G(ν)dν (47)

= − [Rb] (1 − P )φ2(r)
π

2
Γ1σ1G(ν2)L(ν1, ν2) (48)

= − [Rb] (1 − P )
√

π

8
Γ1

σ2
σ1L(ν1, ν2)φ2(r) (49)

φ2(r, z) = φ2(r) exp (−〈σ(ν)〉 [Rb] (1 − P ) z) (50)

〈σ(ν)〉 =
√

π

8
Γ1

σ2
σ1L(ν1, ν2) (51)

=
√

π

2
recf1

σ2
L(ν1, ν2) (52)
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