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1 Introduction

The standard analysis of the spin-exchange optical pumping (SEOP) polarization rate equations yield the
following equilibrium polarizations:

PHe =
[

γse
γse + ΓHe

]
PA & PA =

Aop

Aop + ΓA

(1)

The optical pumping rate is a convolution of the incident photon flux Φ(ν) with the alkali absorption cross
section σ(ν):

Aop =
∫ ∞

0

Φ(ν)σ(ν) dν (2)

The spin-exchange rate (to the 3He nuclei) is the product of the spin-exchange rate constant kse and the
alkali density [A]:

γse = kse[A] (3)

Finally, the spin relaxation rates are traditionally given by the following sums:

ΓA = kA
sd[A] + kHe

sd [He] + kN2
sd[N2] (4)

ΓHe = Γwall + kdip[He] (5)

where ki
sd is the spin destruction rate constant between the alkali atom and some particle of type i, Γwall is

the wall relaxation rate, and kdip is the 3He nuclear dipolar self relaxation rate constant.
According to these equations, if one could provide enough laser power to keep a very high density of

alkali metal polarized, then the 3He polarization could be, in principle, made to equilibrate at unity:

PHe = lim
[A],Φ(ν)→∞

([
γse

γse + ΓHe

]
PA

)
=

[
lim

γse→∞
γse

γse + ΓHe

] [
lim

Aop→∞
Aop

Aop + ΓA

]
= 1 (6)

In practice (with SEOP), the 3He polarization has never been recorded higher than 0.85 and has rarely been
made to exceed 0.80. The situation is even worse for SLAC/JLab style cells. With broadband lasers and
pure Rb SEOP, polarizations have never exceeded 0.50. The situation improves using hybrid SEOP, but the
polarization has yet to exceed 0.60.

Walker et al argue that the maximum possible 3He polarization is about 0.85 because of a previously
unaccounted for 3He spin relaxation mechanism. This so-called ‘X’-factor is either dependant on the alkali
density or has an alkali vapor pressure-like temperature dependance. What we do not know is why the target
cells do not achieve even this level of performance. More than likely, it is a combination of less than unity
alkali polarization and Walker’s ‘X’-factor; but, as of yet, no one has ever systematically measured either of
these parameters for target cells.
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2 General Equations for Hybrid Alkali Polarization

Before going further, it’s important to relax some of the assumptions made to derive the previous equations.
In addition we must account for the modifications due to hybrid SEOP.

1. We’ll introduce a parameter labeled by Λ: it is the probability that an optically excited alkali atom
returns to the opposite ground state from which it started. Traditionally it is assumed that collisional
mixing in the excited state results in Λ = 1/2.

2. We’ll include the effects of pumping both the D1 and D2 transitions of Rb and K.

3. We’ll allow the light to propagate at a skew angle to the magnetic field and also the possibility that it
is not fully circularly polarized.

4. We’ll explicitly acknowledge that the alkali polarization reaches equilibrium very fast relative to its
diffusion time within the pumping chamber. Therefore the alkali polarization is position dependent
with the largest gradient from the front of the cell to the back.

5. We’ll allow for the possibility of a spin destroying process that is induced by the laser light. It is most
natural to express these terms (XR, XK) as a fraction of the total optical pumping rate.

Putting this altogether, we get for the equilibrium alkali polarizations:

PR =
R1 − R2/2 + ηAD [K1 − K2/2]

R0 (1 + XR) + ΓR + ηAD [ΓK + K0 (1 + XK)]
(7)

PK = ηA

(
PR +

K1 − K2/2
Ase[Rb]

)
(8)

where R0 & K0 are the total optical pumping rates for Rb and K, R1(2) & K1(2) are the differential D1 (D2)
optical pumping rates for Rb and K, ηA is the alkali spin-exchange efficiency for K, D is K to Rb density
ratio, and ΓR & ΓK are the spin relaxation rates for Rb and K. The explicit forms of these terms are given
as:

R0, K0 = 2Λ
∫ ∞

0

[ΦR(ν,�r) + ΦL(ν,�r)]
[
σR,K

1 (ν) + σR,K
2 (ν)

]
dν (9)

R1, K1 = 2Λ
∫ ∞

0

[ΦR(ν,�r) − ΦL(ν,�r)] cos(θ)σR,K
1 (ν) dν (10)

R2, K2 = 2Λ
∫ ∞

0

[ΦR(ν,�r) − ΦL(ν,�r)] cos(θ)σR,K
2 (ν) dν (11)

ηA =
Ase[Rb]

Ase[Rb] + ΓK + K0
(12)

D =
[K]
[Rb]

(13)

where ΦR(L) is the photon flux for right (left) circularly polarized light, θ is the skew angle, σ
R(K)
1(2) is the

unpolarized absorption cross section for D1 (D2) transitions in Rb (K). The following equations account for
attenuation of the photon flux as the beam propagates through the cell:

dΦR
dz

= −
[
(1 − PR cos(θ)) σR

1 +
(

1 +
PR

2
cos(θ)

)
σR

2

]
[Rb]ΦR

−
[
(1 − PK cos(θ)) σK

1 +
(

1 +
PK

2
cos(θ)

)
σK

2

]
[K]ΦR (14)

dΦL
dz

= −
[
(1 + PR cos(θ)) σR

1 +
(

1 − PR

2
cos(θ)

)
σR

2

]
[Rb]ΦL

−
[
(1 + PK cos(θ)) σK

1 +
(

1 − PK

2
cos(θ)

)
σK

2

]
[K]ΦL (15)
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3 General Equations for Helium Polarization in a Target Cell

Now we are in a position to discuss the He polarization.

6. Because the He polarization reaches equilibrium very slow relative to its diffusion time within the
pumping chamber, it is essentially uniform in the pumping chamber and only sensitive to the pumping
chamber volume average of the alkali polarization.

7. We’ll assume a relatively fast diffusion time between the pumping chamber and target chamber. This
implies that the diffusion rate dtc is usually much larger than all other rates in the He polarization
process.

8. We’ll allow for the possibility of a spin destroying process that is proportional to the alkali density. It
is most natural to express this term X as a fraction of the total spin exchange rate.

P∞
pc =

fpc (γR
se 〈PR〉V + γK

se 〈PK〉V )

fpc (γR
se + γK

se) (1 + X) + fpcΓpc + ftcΓtc [1 + Γtc/dtc]
−1 (16)

P∞
tc = P∞

pc [1 + Γtc/dtc]
−1 (17)

where the subscript pc(tc) refers to the pumping (target) chamber, dtc is the probability per unit time that a
He nucleus exits the target chamber and enters the pumping chamber, the brackets 〈· · ·〉V refer to a pumping
chamber volume average, and fpc(tc) is the fraction of He nuclei in pumping (target) chamber. The time
dependance of the He polarization is given as:

Ppc(t) = P∞
pc +

[
P 0

pc − P∞
pc − cpc

]
exp (−Γst) + cpc exp (−Γft) (18)

Ptc(t) = P∞
tc +

[
P 0

tc − P∞
tc − ctc

]
exp (−Γst) + ctc exp (−Γft) (19)

where P 0
pc,tc are set by the initial conditions, Γs(f) is the slow (fast) time constant, and the coefficients cpc,tc

are given as:

cpc =
Γs

(
P∞

pc − P 0
pc

) − (ftc/fpc) dtcP
0
tc + [(γR

se + γK
se) (1 + X) + Γpc + (ftc/fpc) dtc] P 0

pc − γR
se 〈PR〉V − γK

se 〈PK〉V
Γf − Γs

(20)

ctc =
Γs

(
P∞

tc − P 0
tc

)
+ (dtc + Γtc)P 0

tc − dtcP
0
pc

Γf − Γs
(21)

Γf = dtc/fpc +
(
γR
se + γK

se

)
(1 + X) + Γpc + Γtc − Γs (22)

Γs = fpc

(
γR
se + γK

se

)
(1 + X) + fpcΓpc + ftcΓtc − δΓ (23)

Using the fact that the diffusion rate dtc is usually much larger than all other rates in the He polarization
process, we can reduce the above equations to the following:

P∞
pc = P∞

tc =
fpc (γR

se 〈PR〉V + γK
se 〈PK〉V )

fpc (γR
se + γK

se) (1 + X) + fpcΓpc + ftcΓtc
(24)

Γf = dtc/fpc (25)
Γs = fpc

(
γR
se + γK

se

)
(1 + X) + fpcΓpc + ftcΓtc (26)

Ppc(t) = P∞
pc [1 − exp (−Γst)] +

[
P 0

pcfpc + P 0
tcftc

]
exp (−Γst) + fpc

[
P 0

tc − P 0
pc

]
exp (−Γft) (27)

Ptc(t) = P∞
tc [1 − exp (−Γst)] +

[
P 0

pcfpc + P 0
tcftc

]
exp (−Γst) + ftc

[
P 0

pc − P 0
tc

]
exp (−Γft) (28)

During a spinup, the polarization starts from zero and there are two distinct time domains defined by
the diffusion time scale:

t � 1/Γf

{
Ppc = (γR

se 〈PR〉V + γK
se 〈PK〉V ) t

Ptc = (γR
se 〈PR〉V + γK

se 〈PK〉V ) dtct
2/2

}
(29)

1/Γf � t � 1/Γs Ppc(t) = Ptc(t) = fpc

(
γR
se 〈PR〉V + γK

se 〈PK〉V
)
t (30)

t � 1/Γf Ppc(t) = Ptc(t) = P∞
pc [1 − exp (−Γst)] (31)
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4 Interesting Plots

1. Alkali Polarization and Alkali Density vs. Laser Power: We would use 1, 2, 3, 4, or 5 lasers to “vary”
the laser power or we could use a set of ND filters. We would do this at low temperature (low alkali
density) and high temperature (high alkali denisty, essentially operating conditions). At low alkali
density, we would have enough laser light to explore whether there is an XR factor. This would be for
one cell and it would be interesting to do the low alkali density test with broadband & narrow lasers.

2. Alkali Polarization and He polarization vs. Skew Angle: We would compare the center beamline with
the offset beamline at a few different angles.

3. Alkali Polarization and He polarization vs. Beam Spot Size: We would vary the location of the second
lens which more or less controls the size of the beam.

4. Alkali Polarization scanned across the cell: This would provide some information about the sensivity
of the alkali polarization to the beam size.

5. Maximum achieved-Alkali Polarization and He polarization vs. Density Ratio: We would measure this
for as many cells as possible.

6. Alkali Polarization and He polarization vs. Alkali Density: We would use this to compare the perfor-
mance of the line narrowed with the broadband laser.

7. Density Ratio vs. Potassium Density: We would do this for one cell and include both pressure broad-
ening data and faraday rotation data.

8. Density Ratio in the alkali mix vs. Density Ratio from pressure broadening measurements: We would
measure this for as many cells a possible.

9. ‘X’ factor vs. S/V ratio: We would only have three different S/V ratios (because of the three different
pumping chamber sizes for the target cells). In the Walker “Limits” paper, they see trends in there X
data: (a) X seems correlated with S/V ratio (b) the lower limit of X is about 0.10. Our data would
further explore the lower left region of the “triangle.”

5 Measuring X

One can measure X with or without knowledge of the alkali density. In a double chambered cell, the
measurement becomes tricker because one is typically measuring “weighted average” rates between the two
chambers. The weights are fraction of atoms in each chamber and are temperature dependant:

fpc =
v

t + v
(32)

ftc =
t

t + v
(33)

t =
Tpc

Ttc
(34)

v =
Vpc

Vtc
(35)

where Tpc(tc) is the pumping (target) chamber temperature in Kelvin and Vpc(tc) is the pumping (target)
chamber volume. There are three methods that require measurements at different alkali densities:

1. One can measure the ratio of the equilbrium He polarization to the alkali polarization as a function of
alkali density. At sufficiently high alkali density, the ratio will become constant. The resulting consant
will be equal to:

lim
[K]→∞

[
P∞

pc

〈PK〉�

]
=

〈PA〉V / 〈PA〉�
1 + X

(36)
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where we’ve assumed that PK = PR and allowed for the possibilty that the volume averaged alkali
polarization is different than the line averaged alkali polarization that the farrot probe beam is sensitive
to. The alkali density would be measured using polarization farrot.

2. One can do a “hot” spindown with the pump lasers off. In this scenario, you would have to wait
for the cell to return to thermal equilibrium and for the “fast” diffusion exponential to decay away.
Under those conditions, the polarization would decay with a time constant of Γs. The slope of the
time constant vs. the alkali density would be given as:

∂Γs

∂[K]
= fpck

K
se

(
1 +

kR
se

kK
se

[
BR − Tpc

BK − Tpc

]
D−1

)
(1 + X) ≈ fpck

K
se

(
1 +

1.4
D

)
(1 + X) (37)

where BR(K) is the pure vapor pressure temperature coefficient for Rb (K) and Tpc is the pumping
chamber temperature. This technique requires knowledge of the cell temperatures and the alkali
density measured using field farrot.

3. One can also do a spinup. This scenario is nearly identical to the previous one, except now the lasers
are on. Therefore the alkali density would be measured using polarization farrot. The uncertainties
in the cell temperature would be larger because of the ΔT effect due to the lasers. Once again, you
would have to wait for the cell to return to thermal equilibrium after turning the lasers on and for the
“fast” diffusion exponential to decay away. Under those conditions, the polarization would buildup
with the same time constant Γs and the same equation would result for the slope of Γs vs. [K].

There are two methods that do not require a measurement of the alkali density, but do require a measuring
a spinup and a cold spindown:

Γs − Γroom

fpc (γR
se + γK

se)
= 1 + X +

[
Γpc + Γtc

(
t
v

) − Γroom/fpc

γR
se + γK

se

]
(38)

The bracketed term on the right is very small when the spin exchange rate is very fast and can be neglecting
when the spinup is done near operating temperatures. The trick is measuring the denominator of the left
side of the previous equation:

1. One could use the appropriate combination of the spinup time constant and the equilibrium polariza-
tions:

Γs − Γroom

P∞
pc Γs/ 〈PA〉�

=
( 〈PA〉�
〈PA〉V

)
(1 + X) (39)

2. One could also track the polarization buildup while it is in the linear regime after the fast exponential
has decayed away:

Γs − Γroom[
dPpc

dt

]
(1/Γf � t � 1/Γs) / 〈PA〉�

=
( 〈PA〉�
〈PA〉V

)
(1 + X) (40)

There last two methods are sensitive to ratio of the alkali polarization averaged over the volume of the cell
to the alkali polarization average over the probe beam path length. It is possible, depending on the shape of
the beam, to have a high probe beam path length average and a low volume averaged polarization. This is
one reason why it would be nice scan the probe beam across the cell perpendicular to the magnetic field. We
could do a crude mapping of the alkali polarization to insure that the probe beam path length average was
representative of the volume average. Another way to study this problem is to do alkali polarization EPR
spectroscopy using an amplitude modulated set of EPR coils. This would only require the same hardware
as the He EPR polarization measurement. In this case however, the EPR coils are driven by an AM signal
with a fixed EPR frequency. One would then record the D2 fluorescence signal from the EPR Lock-In as
the magnetic field is swept. The “standard” analysis of the ratio of the areas under the peaks would result
in the alkali polarization. The benefit of this technique is that it provides an independant measurement of
the alkali polarization over a different sample volume of the cell, without the need of a farrot apparatus.
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