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1 Scattering Amplitude and Cross Sections

The Born cross section for inclusive electron scattering is given by the lowest order feynman diagram. The
differences between the Born cross section and the measured cross section are radiative corrections. These
corrections are due to two effects:

1. higher order corrections due to next to leading order feynman diagrams

2. energy loss by the electron

Higher order corrections are due to the loop diagrams. The vertex loop is composed of:

1. a finite term that results in the anomalous magnetic moment of the electron

2. an ultraviolet divergence that is cancelled by the electron self energy diagrams

3. an infrared divergence that is cancelled by the electron self energy diagrams

4. an infrared divergence that is cancelled by the low energy part of internal bremsstrahlung

The electron self energy diagram is composed of:
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1. an ultraviolet divergence that is cancelled by the vertex diagram

2. an infrared divergence that is cancelled by the vertex diagram

3. a lograthmic correction to the electron mass due to renomarlization

The vacuum diagram is composed of:

1. a lograthmic correction to the electromagnetic coupling constant due to renomarlization

The vertex, electron self energy, and vacuum diagrams add toghether to give the scattering amplitude. The
cross section is proportional to the modulus squared of the scattering amplitude. A term from the vertex
diagram is infrared divergent. This is cancelled by a corresponding term from the internal bremsstrahlung
cross section. Note that this process is a distinct one. Specifically, one calculates the sum of the mod squares
to find the total cross section for electron scattering and internal bremsstrahlung as opposed to finding the
mod square of the sum of the amplitudes for the two processes. Any physical detector has a non zero energy
resolution; therefore the two processes are indistinguisable and only sum is observable. This is reassuring
because only the sum is finite.

Mfull = αMBorn + α2 (Mvertex + Mvacuum + Mself) + · · · (1)

dσfull ∝ |Mfull|2 ≈ α2
[M2

Born + 2αMborn� (Mvertex + Mvacuum + Mself)
]
+ · · · (2)[

d2σ

dEdΩ

]
full

= (1 + δHO + IR + · · ·)
[

d2σ

dEdΩ

]
Born

(3)[
d2σ

dEdΩ

]
IB

=
[

d2σ

dEdΩ

]
IB<

+
[

d2σ

dEdΩ

]
IB>

(4)

[
d2σ

dEdΩ

]
IB<

= (−IR)
[

d2σ

dEdΩ

]
Born

(5)

[
d2σ

dEdΩ

]
EM

=
[

d2σ

dEdΩ

]
full

+
[

d2σ

dEdΩ

]
IB

= (1 + δHO + · · ·)
[

d2σ

dEdΩ

]
Born

+
[

d2σ

dEdΩ

]
IB>

(6)

2 Internal Bremsstrahlung

The internal bremsstrahlung differentional cross section for a discrete state is an integral over all angles for
the emitted photon: [

d2σ

dEdΩ

]
IntB(ω>ω0)

=
∫

BμνTμν dΩk =
∫

a1W1 + a2W2 dΩk (7)

where Bμν is the internal bremsstrahlung tensor and Tμν is the leptonic tensor which contains the structure
functions W1,2. If the continuum is taken to be a spectrum of discrete states, then the internal bremsstrahlung
differentional cross section is just a sum over all states:[

d2σ

dEdΩ

]
IntB(ω>ω0)

=
∫ ∫

a1W1 + a2W2 dΩk dM2
f =

∫ ∫
a′
1W1 + a′

2W2 dΩk dω (8)

For elastic scattering, the internal bremsstrahlung cross section is obtained via a numerical intergration of
the form factors over all emitted photon angles. This is equation (B5) of MT69 or (A.24) of TSAI71 or A24
of STEIN. For the continous spectrum:

1. the angle peaking approximation is made to simplify the angular integration. It take advantage of the
fact that emission of a photon is most likely to happen in the direction of the electron momentum.
Therefore this approximation results in two terms, one due to emission in the direction of the incident
electron and one for emission of the photon in the direction of the scattered electron.

2. the structure functions in the integrand are replaced by the unradiated cross section. The substitution
is not perfect and the “residual” terms are dropped.
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3. the ω integral is rewritten in terms of Es and Ep.

“Explicitly” in equation form:[
d2σ

dEdΩ

]
IntB(ω>ω0)

≈
[∫

a′′
1W1 + a′′

2W2 dω

]
ω‖s

+
[∫

a′′′
1 W1 + a′′′

2 W2 dω

]
ω‖p

(9)

≈
∫

IIntB

[
d2σ

dEdΩ

]
eff

dE′
s +

∫
IIntB

[
d2σ

dEdΩ

]
eff

dE′
p (10)

where IIntB is the probability of internal bremsstrahlung for given photon, incident electron, and scattered
electron energies. This function is essentially the product of the effective radiation thickness and the internal
bremstrahlung spectrum and some other stuff:

[btφ(v)]IntB =
α

π

[
(1 − v)

{
log
(

Q2

m2

)
− 1
}

+
v2

2
log
(

4E

m2

)]
(Hand) (11)

=
α

π

[
log
(

Q2

m2

)
− 1
] [

1 − v +
1
2
v2

]
(Allton & Bjorken) (12)

=
α

π

[(
1 − v +

v2

2

)
log
(

Q2

m2

)
− 1 + v

]
(Mo & Tsai) (13)

=
α

π

[
log
(

Q2

m2

)
− 1
] [

1 − v +
3
4
v2

]
(Equivalent Radiators) (14)

needs work also say something about multiple photon correction

3 External Bremsstrahlung and Collisional Loss

Electrons lose energy passing through materials either by ionizing collisions with atomic electrons or via
bremsstrahlung in Coulombic field within atoms. The amount of energy lost is a statistcal quantity. If
energy is lost before the nuclear scattering takes place, then the incident energy is lower than the beam
energy. If energy is lost after the nuclear scattering, then the momentum of the detected electron is lower
than it’s value immediately after scattering. Therefore the raw experimental cross section for a given set of
kinematics is actually a convolution over a spread of kinematics:

σexp =
∫ T

0

∫ Ebeam

pmom

∫ Es

pmom

I(Ebeam, Es, t)σtot(Es, Ep)I(Ep, pmom, T − t) dEp dEs
dt

T
(15)

where I(Ei, Ef , t) is the probability of losing Ef − Ei amount of energy after travelling an amount t in
radiation length and σtot includes internal bremsstrahlung and higher order corrections. In the limit of an
infinitesimally thin target, we retrieve the “unradiated” cross section:

lim
T→0

∫ T

0

∫ Ebeam

pmom

∫ Es

pmom

I(Ebeam, Es, t)σtot(Es, Ep)I(Ep, pmom, T − t) dEp dEs
dt

T
= σtot(Ebeam, pmom) (16)

To simplify this expression, TSAI71 makes the following arguments:

1. Use a simpler form of σtot to reduce things and then plug back the correct form of σtot. The simple
form of σtot is σun.

2. Treat only the bremsstrahlung part of I. Add the collisional part of I to the reduced form at the very
end by analogy to the bremsstrahlung part.

3. Calculate the integral for a discrete level. This means that the cross section will have an energy delta
function which reduces the area integral into a line integral for constant missing mass.
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4. Make the “energy” peaking approximation. This appoximation reduces the aforementioned line integral
to the cross sections at the endpoints of the line. This approximation physically means that the most
of the energy is lost to a single photon before or after scattering.

5. Subtract out the effect of all discrete levels until the contiuum pion threshold limit is reached.

6. Treat the contiunuum as a series of closely spaced discrete levels and sum over all of them. In other
words, integrate over all missiing mass from the continuum to the point at which the cross section is
being measured. iThe is equivalent to intergrating over one strip with at fixed Ep and another strip
over fixed Es. This result is the reduced form of the area integral.

7. Put back the correct form of σtot and add the contibution from collisional loss.

8. Shift the energies before and after scattering by an amount equal to the most probable collisional
energy loss.

The form of I is obtained by making the following argument:

1. Eyges derives a form for I when the beam energy is small. By comparing the form of I to the form of
the bremsstrahlung spectrum, one finds there is an extra multiplicative term. It is assumed that this
extra term accounts for multiple photons or energy loss events.

2. The problem is that at high beam energies, the Eyges bremsstrahlung spectrum is not correct. There-
fore TSAI simply substitutes the a more reasooable form of the bremsstrahlung spectrum at high
energies keeping the form of the multple photon correction.

4 Inital and Final Electron Energies

We’ll assume that h̄ = c = 1 except where noted. The electron is assumed to be very relativistic β � 1,
consequently E � p unless otherwise noted. The incident electron energy Es and final electron energy Ep

are related to the beam energy and spectrometer momentum by:

Es = Ebeam − Δs (17)
Ep = pmom + Δp (18)

where Δs,p is the enegy loss due to ionizing collisions. For a pure element, the energy loss per unit density
per unit thickness is given by:[

Δ
ρx

]
=

[
ξ

ρx

] [
2 log

(
mec

2

IBB

)
+ log

(
γ2 − 1

)− δ(X) + g

]
(19)[

ξ

ρx

]
=

Za

Aβ2
(20)

a = 2πNAr2
emec

2 = 0.15353747 MeV · cm2

mol
(21)

β =
v

c
=

pc

E
(22)

γ =
1√

1 − β2
=

E

mec2
(23)

where Z & A are the element’s atomic number and weight (in g/mol), p & E are the electron’s momentum
and energy, ρ & x are the element’s mass density and thickness, IBB is the mean excitation potential of the
material, δ(X) is the density correction, and g depends on whether one is interested in the mean loss or
most probable loss. The density correction δ is given by [?, ?]:

δ(X) =

⎧⎨
⎩

δ
(
Xδ

0

)× 102(X−Xδ
0) X ≤ Xδ

0

4.6052X + Cδ + aδ

(
Xδ

1 − X
)mδ Xδ

0 < X < Xδ
1

4.6052X + Cδ X > Xδ
1

⎫⎬
⎭ (24)

X = log10 (βγ) (25)
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where Cδ, Xδ
0 , Xδ

1 , aδ, and mδ depend on the element. For the mean energy loss, g is given by:

ḡ = log (γ − 1) − F (γ) (26)

F (γ) =
[
1 +

2
γ
− 1

γ2

]
log(2) − 1

8

[
1 − 1

γ

]2
− 1

γ2

≈ log(2) − 1
8

= 0.568 for γ � 1

and for the most probable energy loss, g is given by:

gmp = log
[

2γ2ξ

mec2

]
− β2 + 0.198 (27)

For a composite material, the energy loss due to ionization is given by:

Δ =

(∑
k

[
Δ
ρx

]
k

wk

)
ρx (28)

ξk =
[

ξ

ρx

]
k

wkρx (29)

where wk is the fraction by weight of element k in the material. For a sequence of materials located one
after another, the energy loss due to ionization is given by:

Δ =
∑

j

Δj =
∑

j

(∑
k

[
Δ
ρx

]
k

wj
k

)
ρjxj (30)

where wj
k is the fraction by weight of the k-th element in the j-th material. TSAI71 argues that we should

use the most probable energy loss, so that is what we will use.

5 Elastic Tail

In the formalism of TSAI71 and Stein, the elastic tail is a sum of three parts as implemented in the fortran
program ROSETAIL.F:[

d2σ

dEdΩ

]
elastic

=
(

Rt ·
[

d2σ

dEdΩ

]
InB

+
[

d2σ

dEdΩ

]
ExB

+
[

d2σ

dEdΩ

]
coll

)
· Fsoft (31)

where Rt accounts for radiation emitted by the target nucleus and Fsoft accounts for the radiation of multiple
photons. It’s not clear if this term should also be used to “correct” the part of the tail due to collisional loss,
but we’ll leave it as it is. The target radiation correction neglecting the electron mass is given by Miller 72:

Rt = 1 +
α

πbtr

[(
1 + 2τ

2τ
√

1 + 1/τ

)
log
(
1 + 2τ + 2τ

√
1 + 1/τ

)
− 1 + 2 log (ηs)

]
(32)

and the multple photon correction is given by

Fsoft =
[
vbtb+btr

s

] · [vbta+btr
p

]
(33)

where the kinematic factors are:

ηs = 1 +
2Es

MT
sin2

(
θ

2

)
(34)

ηp = 1 − 2Ep

MT
sin2

(
θ

2

)
(35)

Q2 = 4EsEp sin2

(
θ

2

)
(36)

τ =
Q2

4M2
T

(37)
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and the emitted photon energy is ω:

ωs = Es − Ep/ηp (38)
ωp = Es/ηs − Ep (39)

vs =
ωs

Es
(40)

vp =
ωp

Ep + ωp
(41)

where v is the emitted photon energy as a fraction of the electron energy. The external radiation lengths
before and after the target are tb & ta and with different definitions of b:

L(Z) = log
(
184.15Z−1

3

)
− f(Zα) ≈ log

(
191Z−1

3

)
− 1.2(Zα)2 ≈ log

(
183Z−1

3

)
(42)

f(z) = z2
∞∑

ν=1

1
ν (ν2 + z2)

≈ z2

[
1

1 + z2
+ 0.20206− 0.0369z2 + 0.0083z4 − 0.002z6

]
(43)

L′(Z) = log
(
1194Z−2

3

)
≈ log

(
1440Z−2

3

)
(44)

b =
4
3

[
1 +

1
12

(
Z + 1

ZL + L′

)]
=

4
3

+
1
9

(
Z + 1

ZL + L′

)
≈ 4

3
(45)

The early papers did not take into account the Coulomb correction f(z). In addition the older fomula for the
second radiation integral L′(Z) has the incorrect factor (1440) due to a mislabled graph in the old Wheeler
and Lamb paper. Ultimately we’ll simply use b = 4/3 because:

1. the bremsstrahlung cross section in the complete screening limit has an additional small term

2. the radiation length should also has a small additional term

3. to lowest order, these two small terms cancel

4. the moral of the story is that this small term should be included in both the bremsstrahlung spectrum
and the radiation length or in neither one

The form factor modifier is:

δvertex =
2α

π

[
−1 +

3
4

log
(

Q2

m2

)]
(46)

δvacuum =
2α

π

[
−5

9
+

1
3

log
(

Q2

m2

)]
(47)

δschwinger =
α

π

[
π2

6
− Φ

(
cos2

(
θ

2

))]
(48)

δ0 =
α

π

[
Φ
(

Es − Ep

Es

)
+ Φ

(
Ep − Es

Ep

)]
≈ − α

2π
log2

(
Es

Ep

)
(49)

δHO = δvertex + δvacuum + δschwinger + δ0 (50)

F̄ (Q2) =
exp (δHO)

Γ(1 + btb) · Γ(1 + bta)
≈ 1 + δHO + 0.5772 (bta + btb) (51)

where the Schwinger term has a simple form because Es � Ep is not true in the lab reference frame. It’s
not clear if the higher order δ factors should be exponentiated, but it has not practical difference since
δHO is small. The gamma functions are due to the normalization of the external bremsstrahlung straggling
fucntion. In principle the correct normalization is a product of two gamma functions, but there is little
practical difference because bt is so small.

The internal bremsstrahlung process involves the following quantities in the lab frame of reference:

1. s = (Es, �s) , the incoming electron
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2. p = (Ep, �p) , the outcoming electron

3. k = (ω,�k) , the emitted photon

4. pi = (MT , 0) , the intial state of the target nucleus

5. pf = s + pi − p − k , the final state of the target nucleus

6. u = (u0, �u) = s + pi − p = pf + k , the final state of the target nucleus had there been no radiation

7. û defines the z-axis of the coordinate system

8. �u, �s, and �p all lie in the xz-plane

9. θs is the angle between �s and �u

10. θp is the angle between �p and �u

11. θ = θp − θs is the angle between �s and �p or equivalently the scattering angle in the lab frame

12. θk is the angle between �k and �u

The exact calculation of elastic internal bremsstrahlung:[
d2σ

dEdΩ

]ex
InB

=
α3Ep

2πEs

∫ +1

−1

d (cos(θk))
4ω2MT

q4 (u2 − M2
T )

× [W1(q2) (As + Ap) + W2(q2) (Bs + Bp)
]
F̄ (q2) (52)

As =
asm

2

x3
s

(
2m2 + q2

)
+ 2 +

4ν

xs
(s · p)

[
(s · p) − 2m2

]
+
[
2 (s · p) + 2m2 − q2

xs

]
(53)

Ap =
apm

2

x3
p

(
2m2 + q2

)
+ 2 − 4ν

xp
(s · p)

[
(s · p) − 2m2

]− [2 (s · p) + 2m2 − q2

xp

]
(54)

Bs = −asm
2

x3
s

[
2Es (Ep + ω) +

q2

2

]
− 1 +

2ν

xs

{
m2
[
(s · p) − ω2

]
+ (s · p) [2EsEp − (s · p) + ω (Es − Ep)]

}

+

[
2
(
EsEp + Esω + E2

p

)
+ q2/2 − (s · p) − m2

xs

]
(55)

Bp = −apm
2

x3
p

[
2Ep (Es − ω) +

q2

2

]
− 1 − 2ν

xp

{
m2
[
(s · p) − ω2

]
+ (s · p) [2EsEp − (s · p) + ω (Es − Ep)]

}

−
[

2
(
EsEp − Epω + E2

s

)
+ q2/2 − (s · p) − m2

xp

]
(56)

where As & Bs and Ap & Bp correspond to photon emission before and after scattering from the target
nucleus respectively. The following electron kinematic factors include the small electron mass:

|�s| =
√

E2
s − m2 (57)

|�p| =
√

E2
p − m2 (58)

(s · p) = EsEp − |�s||�p| cos(θ) (59)
u2 = 2m2 + M2

T − 2 (s · p) + 2MT (Es − Ep) (60)
u0 = Es + MT − Ep (61)

|�u| =
√

u2
0 − u2 (62)

ω =
u2 − M2

T

2 [u0 − |�u| cos(θk)]
(63)

q2 = 2m2 − 2 (s · p) − 2ω (Es − Ep) + 2ω|�u| cos(θk) (64)
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cos(θs) =
|�s| − |�p| cos(θ)

|�u| (65)

cos(θp) =
|�s| cos(θ) − |�p|

|�u| (66)

These are kinematic factors that correspond to the emitted photon:

as = ω [Es − |�s| cos(θs) cos(θk)] (67)
ap = ω [Ep − |�p| cos(θp) cos(θk)] (68)

ν =
1

as − ap
(69)

bs = bp = −ω|�s|
√

1 − cos2(θs)
√

1 − cos2(θk) = −ω|�p|
√

1 − cos2(θp)
√

1 − cos2(θk) (70)

xs =
√

a2
s − b2

s (71)

xp =
√

a2
p − b2

p (72)

The elastic cross section and form factors are defined as:[
dσ(E)

dΩ

]
el

= η

[
4αE cos

(
θ
2

)
ηQ2

]2 [
W2

(
Q2
)

+ 2 tan2

(
θ

2

)
W1

(
Q2
)]

(73)

η = 1 +
2E

MT
sin2

(
θ

2

)
(74)

Q2 = 2EMT

(
1 − 1

η

)
(75)

τ =
Q2

4M2
T

(76)

W1

(
Q2
)

= τ
[
GM

(
Q2
)]2

(77)

W2

(
Q2
)

=

[
GE

(
Q2
)]2 + τ

[
GM

(
Q2
)]2

1 + τ
(78)

The peaking approximation for the elastic internal is:[
d2σ

dEpdΩ

]pk

InB

=
[

d2σ

dEpdΩ

]k‖s
InB

+
[

d2σ

dEpdΩ

]k‖p
InB

(79)

[
d2σ

dEpdΩ

]k‖s
InB

=
[
ηs − (ηs − 1) vs

ηp

] [
btrφ(vs)

ωs

]
F̄
(
Q2

s

) [dσ(Es − ωs)
dΩ

]
el

(80)

[
d2σ

dEpdΩ

]k‖p
InB

=
[
btrφ(vp)

ωp

]
F̄
(
Q2

p

) [dσ(Es)
dΩ

]
el

(81)

Q2
s = 2 (Es − ωs)MT

(
1 − 1

ηs − (ηs − 1) vs

)
(82)

Q2
p = 2EsMT

(
1 − 1

ηs

)
(83)

where btrφ(v) is the product of effective internal bremsstrahlung radiation length and effective bremm-
strhalung spectrum. MT69 list four different variations of the peaking approximation:

[btrφ(v)]InB =
α

π

[
(1 − v)

{
log
(

Q2

m2

)
− 1
}

+
v2

2
log
(

4E

m2

)]
(Hand) (84)

=
α

π

[
log
(

Q2

m2

)
− 1
] [

1 − v +
1
2
v2

]
(Allton & Bjorken) (85)
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=
α

π

[(
1 − v +

v2

2

)
log
(

Q2

m2

)
− 1 + v

]
(Mo & Tsai) (86)

=
α

π

[
log
(

Q2

m2

)
− 1
] [

1 − v +
3
4
v2

]
(Equivalent Radiators) (87)

If we define the effective internal radiation length tr in the following way:

btr ≡ α

π

[
log
(

Q2

m2

)
− 1
]

(88)

then the effective internal bremsstrahlung spectum is given by:

φ(v) ≡ [btrφ(v)]InB

btr
(89)

We’ll follow Stein and TSAI71 and choose the equivalent radiators method as our “peaking” approximation:

φ(v) = 1 + v − 3
4
v2 (90)

The tail due to external bremstrahlung can be written in a similar form:[
d2σ

dEpdΩ

]
ExB

=
[

d2σ

dEpdΩ

]bef

ExB

+
[

d2σ

dEpdΩ

]aft
ExB

(91)

[
d2σ

dEpdΩ

]bef

ExB

=
[
ηs − (ηs − 1) vs

ηp

] [
btbφ(vs)

ωs

]
F̄
(
Q2

s

) [dσ(Es − ωs)
dΩ

]
el

(92)

[
d2σ

dEpdΩ

]aft
ExB

=
[
btaφ(vp)

ωp

]
F̄
(
Q2

p

) [dσ(Es)
dΩ

]
el

(93)

and the the tail due to collisional loss can be written in a similar form as well:[
d2σ

dEpdΩ

]
coll

=
[

d2σ

dEpdΩ

]bef

coll

+
[

d2σ

dEpdΩ

]aft
coll

(94)

[
d2σ

dEpdΩ

]bef

coll

=
[
ηs − (ηs − 1) vs

ηp

] [
ξb

ω2
s

]
F̄
(
Q2

s

) [dσ(Es − ωs)
dΩ

]
el

(95)

[
d2σ

dEpdΩ

]aft
coll

=
[

ξa

ω2
p

]
F̄
(
Q2

p

) [dσ(Es)
dΩ

]
el

(96)

where the collisional energy loss factor is given by

ξb,a =
b,a∑
j

[
ξ

ρx

]
j

ρjxj =
b,a∑
j

(∑
k

[
ξ

ρx

]
k

wj
k

)
ρjxj (97)

[
ξ

ρx

]
k

=
Zka

Akβ2
(98)

where wj
k is the fraction by weight of the k-th element in the j-th material before or after scattering. Note

that TSAI71 defines this factor as:

ξa = ξb ≡ ξ

2
=

πm

4α

ta + tb
ZL + L′ (99)

Specifically TSAI71 assumes the the effective collisional loss thickness is the same before and after scattering.
In our case the thickness after scattering is always substantially larger (ta/tb ≥ 10 � 1). TSAI71 also
assumes the the collisional thickensss is directly proportional to the radiation thickness. If all of the target
and window (non-target) material were composed of a single element, then this would be true. However, we
have many different composite materials so this is not a reasonable assumption either.

The main differences and new corrections are:
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1. the energy loss to colliions will be calculated using the most probable formula as opposed to the mean
formula

2. we will use b = 4/3 and calculate the radiation lengths neglecting the extra small factor

3. the normalization factor will be written as a product of two gamma functions

4. the collisional loss factor will be calculate from scratch as opposed to assuming that it is proportional
to the radiation length

5. for all the kinematic factors we’ll use the mass of the nucleus as opposed to the mass of the atom

6. we’ll include the factor for target radiation ala Miller 72

7. we’ll keep the δ0 as a sum of two Spence functions instead of using the approximate reduced form

6 Inelastic Tail

The results of the previous section allow us to subtract out the tail due to the elastic scattering from the
target nucleus. What remains is the quasielastic and inelastic spectrum for scattering from the nucleon.
Stein uses a model for the quasielastic and subtracts it our before coniderign the inelastic specrturm. We
will treat the quasielastic region as if it were part of the inelastic spectrum. I believe that this is standard
partice within the Pol 3He collaboration. As mentioned before, the area integral is reduced to two line
integrals by the energy peaking approximation. This is tantamount to assuming that the the electron either
radiates before or after scattering only. The error due to approximation scale as b2(ta + tb)2. Therefore the
error is on order of a percent when b(ta + tb) = 0.1 . The end result is a line integral over E′

p for fixed Es, a
line integral over E′

s over fixed Ep, and a small area integral over in the vicinity of Es and Ep.[
d2σ

dEdΩ

]
inelastic

=
[

d2σ

dEdΩ

]
aft

+
[

d2σ

dEdΩ

]
bef

+
[

d2σ

dEdΩ

]
low

(100)

The small area integral corresponds to the emission of very low energy photons. To evaluate this part, we
assume that the cross section is constant over this bin, find the asymptotic forms of the straggling functions
as the energy loss approaches zero, and then finally integrate over an energy bin of size ΔE by RΔE where
R is given by:

R =
ηs

ηp
=

MT + 2Es sin2
(

θ
2

)
MT − 2Ep sin2

(
θ
2

) (101)

Accroding to Tsai 71, this bin size needs to be at least 10 times larger that the collisional energy loss factor
ΔE/ξ ≥ 10 but small enough that the cross section does not change much over the bin. If done properly,
the final answer should be insensitive to the choice of ΔE. The low photon energy integral is given by:[

d2σ

dEdΩ

]
low

=
(

RΔE

Es

)btb+btr
(

ΔE

Ep

)bta+btr
[
1 − (ξb + ξa) /ΔE

1 − b (ta + tb + 2tr)

]
F̄ (Q2)

[
d2σ

dEdΩ

]
born

(102)

The integral corresponding to energy loss only before scattering is given by:[
d2σ

dEdΩ

]
bef

=
∫ Emax

s

Emin
s

F s
soft (W s

b + W s
i ) F̄ (Q2)

[
d2σ

dEdΩ

]
born

dE′
s (103)

Emax
s = Es − RΔE (104)

Emin
s = Ep/ηp (105)

F s
soft =

(
Es − E′

s

EpR

)bta+btr
(

Es − E′
s

Es

)btb+btr

(106)

W s
b =

[
btb + btr
Es − E′

s

]
φ

(
Es − E′

s

Es

)
(107)

W s
i =

ξb

(Es − E′
s)

2 (108)
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The integral corresponding to energy loss only after scattering is given by:[
d2σ

dEdΩ

]
aft

=
∫ Emax

p

Emin
p

F p
soft (W p

b + W p
i ) F̄ (Q2)

[
d2σ

dEdΩ

]
born

dE′
p (109)

Emax
p = Es/ηs (110)

Emin
p = Ep + ΔE (111)

F p
soft =

(
E′

p − Ep

E′
p

)bta+btr ( (E′
p − Ep)R

Es

)btb+btr

(112)

W p
b =

[
bta + btr
E′

p − Ep

]
φ

(
E′

p − Ep

E′
p

)
(113)

W p
i =

ξa(
E′

p − Ep

)2 (114)

7 Spence Function

The Spence function is really a definite integral that must be evaluated numerically:

Φ(x) = −
∫ x

0

log|1 − y|
y

dy (115)

AS 27.7 Dilogarithm lists the following properties:

Φ(x) =
∞∑

n=1

xn

n2
for |x| ≤ 1 (116)

Φ(+1) =
π2

6
(117)

Φ(+1/2) =
π2

12
− 1

2
log2(2) (118)

Φ(0) = 0 (119)

Φ(−1) = −π2

12
(120)

Φ(x) = +
π2

3
− 1

2
log2|x| − Φ(1/x) for x ≥ 1 (121)

Φ(x) = −π2

6
− 1

2
log2|x| − Φ(1/x) for x ≤ −1 (122)

Φ(x) = +
π2

6
− log(1 − x) log(x) − Φ(1 − x) for 0 < x < +1 (123)

which can implemented recursively on the computer as:

Φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−π2/6 − 0.5 log2|x| − Φ(1/x) x < −1.005
Φ′(x) −1.005 ≤ x < −0.995∑Nmax

n=1 xn/n2 −0.995 ≤ x < 0
0 x = 0∑50

n=1 xn/n2 0 < x < +0.5
+π2/12 − 0.5 log2(2) x = +0.5
+π2/6 − log(1 − x) log(x) − Φ(1 − x) +0.5 < x < +1
+π2/6 x = +1
+π2/3 − 0.5 log2|x| − Φ(1/x) x > +1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(124)

where the we treat the region between −1.005 and 0 in the following way. Between −0.995 and 0, we simply
perform a brute force sum. However we limit the number of terms Nmax by proscribing a desired precision
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ε in the following way:
ε = 10−14 ≥ xNmax/N2

max (125)

Bewteen −1.005 and −0.995, we fit the DiLog function evaluated by Maple with 20 digit precision to a
fourth order polynomial:

Φ′(x) = −π2

12

[
1 +

4∑
n=1

cn (x + 1)n

]
(126)

c1 = −0.8427659547E−00 (127)
c2 = −0.1174192121E−00 (128)
c3 = −0.2698522084E−01 (129)
c4 = −0.1077307053E−01 (130)

Note that the parameterization gets better as x approaches −1 from either direction. Therefore only near
−1.005 and −0.995 does this parameterization yields 10 digit precision. Everywhere else one can expect
around 14 digit precision.

8 Gamma Function

The gamma function is also a definite integral that must be evaluated numerically:

Γ(z) =
∫ ∞

0

tz−1 exp(−t) dt (131)

AS 6.1 has the following properties:

Γ(n + 1) = n! for integer n > 0 (132)
Γ(1) = 1 (133)

Γ(1 − z) =
π

sin(πz)Γ(z)
(134)

The Lanczos approximation is given as:

Γ(1 + z) =
√

2π (z + g + 1/2)z+1/2 exp(z + g + 1/2)Ag(z) (135)

Ag(z) =
[
1
2

]
p0(g) +

[
z

z + 1

]
p1(g) +

[
z(z − 1)

(z + 1)(z + 2)

]
p2(g) +

[
z(z − 1)(z − 2)

(z + 1)(z + 2)(z + 3)

]
p2(g) + · · ·

(136)

where �z > 0, g is a freely chosen constant subject to the constraint �(z + g+1/2) > 0, and the coeffecients
pk(g) are functions of g. The sum can be truncated and rewritten in the form:

Ag(z) = c0 +
N−1∑
k=1

ck

z + k
+ ε (137)

where a judicous choice of g and N can results in arbitrarily small ε. Note that this approximation is valid
for all complex numbers when used in conjunction with the reflection formula. The GNU Scientific Library
uses g = 7 and N = 9 with the following coefficients:

A7(z) = c0 +
8∑

k=1

ck

z − 1 + k
(138)

c0 = +0.9999999999998099E+00 (139)
c1 = +6.7652036812188510E+02 (140)
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Ep
“exact” numerical integration peaking approximation “exact”/peaking
M&T R Δ M&T R Δ M&T R Δ

18.4 15.85 15.85 +0.00 15.85 15.85 +0.00 +0.00 +0.00 +0.00
17.5 1.884 1.884 +0.00 1.862 1.862 +0.00 +1.17 +1.17 +0.00
16.5 1.246 1.246 +0.00 1.179 1.179 +0.00 +5.38 +5.38 +0.00
10.0 5.011 5.012 −0.02 3.835 3.836 −0.03 +23.47 +23.46 −0.01
5.0 42.70 42.71 −0.02 42.03 42.03 +0.00 +1.57 +1.59 +0.02
1.5 581.9 582.5 −0.10 676.5 676.6 −0.01 −16.26 −16.15 +0.09

GeV nb/GeV/sr % nb/GeV/sr % % % %

4.8 17.26 17.26 +0.00 17.26 17.26 +0.00 +0.00 +0.00 +0.00
4.5 4.533 4.533 +0.00 4.526 4.531 −0.11 +0.15 +0.04 −0.11
4.0 2.250 2.250 +0.00 2.236 2.248 −0.54 +0.62 +0.09 −0.54
2.5 1.665 1.665 +0.00 1.615 1.686 −4.40 +3.00 −1.26 −4.40
1.0 5.690 5.699 −0.16 5.226 6.086 −16.46 +8.15 −6.79 −16.27

GeV μb/GeV/sr % μb/GeV/sr % % % %

0.980 3.733 3.734 −0.03 3.733 3.734 −0.03 +0.00 +0.00 +0.00
0.900 0.6244 0.6246 −0.03 0.6239 0.6247 −0.13 +0.08 −0.02 −0.10
0.700 0.2275 0.2276 −0.04 0.2247 0.2279 −1.42 +1.23 −0.13 −1.38
0.500 0.1934 0.1937 −0.16 0.1846 0.1940 −5.09 +4.55 −0.15 −4.93
0.300 0.3048 0.3079 −1.02 0.3080 0.3081 −0.03 −1.05 −0.06 +0.97
0.200 0.5435 0.5611 −3.24 0.5612 0.5612 +0.00 −3.26 −0.02 +3.14

GeV mb/GeV/sr % mb/GeV/sr % % % %

Table 1: Comparison of Radiative tails from elastic ep scattering with Es = 20, 5, 1 GeV and θ = 5o. M&T
refers to Table III. of [?], R refers to the fortran code ROSETAIL.F , and Δ is the relative difference
between the two. The peaking approximation that is implemented in ROSETAIL.F correponds to the
“Equivalent Radiators” column in M&T.

c2 = −1.2591392167224028E+03 (141)
c3 = +7.7132342877765313E+02 (142)
c4 = −1.7661502916214059E+02 (143)
c5 = +1.2507343278686905E+01 (144)
c6 = −1.3857109526572012E−01 (145)
c7 = +9.9843695780195716E−06 (146)
c8 = +1.5056327351493116E−07 (147)

where we have shifted z in order to evaluate Γ(z). Using these coefficients in the following recursive computer
implementation yields at least 13 digits for all real z:

Γ(z) =

⎧⎨
⎩

π(1 − z)/ sin[π(1 − z)]/Γ(2 − z) z < 1
1 z = 1
exp [0.5 log(2π) + (z − 0.5) log(z − 0.5 + g) − z + 0.5 − g + log(A7(z))] z > 1

⎫⎬
⎭ (148)

9 comparison to Mo Tsai
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