Formulae for Inclusive Electron Scattering

Jaideep Singh
University of Virginia
Version 0.01

February 18, 2007

Abstract

A collection of formulae for kinematics and cross sections etc.

Contents

1 Units 1
2 Kinematics 1
3 Kinematic Limits 4
4 Nonrelativistic Limit 4
5 Relativistic Limit 5

1 Units

The speed of light c is set equal to 1 . To retrieve physical units:

$$
\begin{align*}
& \text { energy } E \rightarrow E \tag{1}\\
& \text { mass } m \rightarrow E c^{2} \tag{2}\\
& \rightarrow m c \tag{3}\\
& 4-\operatorname{momentum} p \rightarrow p c \tag{4}\\
& \text { momentum } \vec{p} \rightarrow p \tag{5}\\
& \text { mp } c \rightarrow \vec{p} \tag{6}\\
& \text { invariant mass squared } W^{2} \rightarrow W^{2} c^{4}
\end{align*} \rightarrow W^{2} c^{2},
$$

2 Kinematics

We'll use the notation of MT69 [?]. All noninvarient quantities are evaluated in the lab frame of reference. In this frame, the target particle is initially at rest. The 4 -momenta of the incoming and outgoing electron are s and p. The 4 -momentum of the virtual photon is q. The 4 -momentum of the target particle is p_{i} and the total 4 -momentum of the producs is p_{f}. They are depicted in Fig. (1) and are related to each other by the conservation of energy and momentum:

$$
\begin{align*}
s & =\left(E_{s}, \vec{p}_{s}\right) \tag{7}\\
p & =\left(E_{p}, \vec{p}_{p}\right) \tag{8}\\
q & =s-p=\left(E_{s}-E_{p}, \vec{p}_{s}-\vec{p}_{p}\right)=(\nu, \vec{q}) \tag{9}\\
p_{\mathrm{i}} & =(M, 0) \tag{10}\\
p_{\mathrm{f}} & =s+p_{\mathrm{i}}-p=p_{\mathrm{i}}+q=(M+\nu, \vec{q}) \tag{11}
\end{align*}
$$

Figure 1: Kinematic Variables.

The invariant quantities are the rest masses of the electron m and target particle M, the imaginary rest mass of the virtual photon $i \sqrt{Q^{2}}$, and the sum of the rest masses of the products W :

$$
\begin{align*}
s^{2} & =E_{s}^{2}-\left|\vec{p}_{s}\right|^{2}=m^{2} \tag{12}\\
p^{2} & =E_{p}^{2}-\left|\vec{p}_{p}\right|^{2}=m^{2} \tag{13}\\
q^{2} & =\nu^{2}-|\vec{q}|^{2}=-Q^{2} \tag{14}\\
p_{\mathrm{i}}^{2} & =M^{2} \tag{15}\\
p_{\mathrm{f}}^{2} & =(M+\nu)^{2}-|\vec{q}|^{2}=W^{2} \tag{16}
\end{align*}
$$

The energy and momentum of the incoming and outgoing electron are:

$$
\begin{align*}
p_{s} & =\left|\vec{p}_{s}\right|^{2} \tag{17}\\
p_{p} & =\left|\vec{p}_{p}\right|^{2} \tag{18}\\
E_{s} & =\sqrt{m^{2}+p_{s}^{2}} \tag{19}\\
E_{p} & =\sqrt{m^{2}+p_{p}^{2}} \tag{20}
\end{align*}
$$

The energy lost by the incident electron is:

$$
\begin{equation*}
\nu=E_{s}-E_{p} \tag{21}
\end{equation*}
$$

The 4-momentum transferred squared is:

$$
\begin{equation*}
Q^{2}=-(s-p)^{2}=-s^{2}-p^{2}+2 s p=-2 m^{2}+2\left(E_{s} E_{p}-\vec{p}_{s} \cdot \vec{p}_{p}\right) \tag{22}
\end{equation*}
$$

It is related to the angle of the scattered electron θ :

$$
\begin{align*}
\vec{p}_{s} \cdot \vec{p}_{p} & =p_{s} p_{p} \cos (\theta) a \tag{23}\\
Q^{2} & =2\left[E_{s} E_{p}-p_{s} p_{p} \cos (\theta)-m^{2}\right] \tag{24}
\end{align*}
$$

The invariant mass of the products is:

$$
\begin{align*}
W^{2} & =(M+\nu)^{2}-|\vec{q}|^{2}=\left(M^{2}+2 \nu M+\nu^{2}\right)-\nu^{2}-Q^{2} \tag{25}\\
& =M^{2}+2 \nu M-Q^{2} \tag{26}
\end{align*}
$$

It is useful to find a more direct relationship between ν and W. Inserting the equation for Q and isolating the p_{p} term gives:

$$
\begin{equation*}
\frac{W^{2}-M^{2}}{2}+\left(E_{s} E_{p}-m^{2}\right)-M\left(E_{s}-E_{p}\right)=p_{s} p_{p} \cos (\theta) \tag{27}
\end{equation*}
$$

Squaring both sides results in a quadratic equation for E_{p} :

$$
\begin{align*}
0 & =A E_{p}^{2}-B E_{p}+C \tag{28}\\
A & =M^{2}+m^{2}+2 M E_{s}+p_{s}^{2} \sin ^{2}(\theta) \tag{29}\\
B & =\left[\left(M+E_{s}\right)\left(W^{2}-M^{2}\right)+2 p_{s}^{2}\left(M+E_{s} \sin ^{2}(\theta)\right)\right] \tag{30}\\
C & =\frac{\left(W^{2}-M^{2}\right)^{2}}{4}+p_{s}^{2}\left(W^{2}-M^{2}\right)+p_{s}^{4} \sin ^{2}(\theta) \tag{31}\\
E_{p} & =\frac{2 C}{B+\sqrt{B^{2}-4 A C}} \tag{32}
\end{align*}
$$

Writing this in terms of ν gives:

$$
\begin{equation*}
\nu=\frac{E_{s}\left(B+\sqrt{B^{2}-4 A C}\right)-2 C}{B+\sqrt{B^{2}-4 A C}} \tag{33}
\end{equation*}
$$

3 Kinematic Limits

The minimum energy of the scattered electron is its mass:

$$
\begin{equation*}
E_{p}^{\min }=m \tag{34}
\end{equation*}
$$

Elastic scattering occurs when target particle remains intact. The conservation of momentum requires that the electron loses some energy to the recoil of the target particle. Setting $W=M$ in equations (30) \& (31) gives for $B \& C$:

$$
\begin{align*}
B_{\mathrm{el}} & =2 p_{s}^{2}\left(M+E_{s} \sin ^{2}(\theta)\right) \tag{35}\\
C_{\mathrm{el}} & =p_{s}^{4} \sin ^{2}(\theta) \tag{36}
\end{align*}
$$

Using these elastic values for $B \& C$ and rearranging some things gives for $E_{p}^{\max }$:

$$
\begin{equation*}
E_{p}^{\max }=E_{s}\left(\frac{1+\cos (\theta) \sqrt{1-\frac{m^{2}}{M^{2}} \sin ^{2}(\theta)}+[1+\cos (\theta)] \frac{2 m^{2}}{M E_{s}} \sin ^{2}\left(\frac{\theta}{2}\right)}{1+\cos (\theta) \sqrt{1-\frac{m^{2}}{M^{2}} \sin ^{2}(\theta)}+[1+\cos (\theta)] \frac{2 E_{s}}{M} \sin ^{2}\left(\frac{\theta}{2}\right)}\right) \tag{37}
\end{equation*}
$$

Consequently, the minimum energy lost by the electron also depends on the scattering angle:

$$
\begin{align*}
\nu_{\min } & =E_{s}-E_{p}^{\max } \tag{38}\\
& =E_{s}\left(\frac{[1+\cos (\theta)] \frac{2 p_{s}^{2}}{M E_{s}} \sin ^{2}\left(\frac{\theta}{2}\right)}{1+\cos (\theta) \sqrt{1-\frac{m^{2}}{M^{2}} \sin ^{2}(\theta)}+[1+\cos (\theta)] \frac{2 E_{s}}{M} \sin ^{2}\left(\frac{\theta}{2}\right)}\right) \tag{39}
\end{align*}
$$

The maximum energy lost by the incident electron is:

$$
\begin{equation*}
\nu_{\max }=E_{s}-E_{p}^{\min }=E_{s}-m \tag{40}
\end{equation*}
$$

The lowest Q^{2} occurs when the electron loses most of it's energy:

$$
\begin{equation*}
Q_{\min }^{2}=2 m \nu_{\max }=2 m\left(E_{s}-m\right) \tag{41}
\end{equation*}
$$

The highest Q^{2} occurs when the electron is scattered elastically:

$$
\begin{equation*}
Q_{\max }^{2}=2 M \nu_{\min } \tag{42}
\end{equation*}
$$

The lowest W also occurs for elastic scattering:

$$
\begin{equation*}
W_{\min }^{2}=M^{2}+2 \nu_{\min } M-Q_{\max }^{2}=M^{2} \tag{43}
\end{equation*}
$$

The highest W occurs when the electron loses most of its energy:

$$
\begin{equation*}
W_{\max }^{2}=M^{2}+2 \nu_{\max } M-Q_{\min }^{2}=M^{2}+2\left(E_{s}-m\right)(M-m) \tag{44}
\end{equation*}
$$

4 Nonrelativistic Limit

The nonrelativistic limit is reached when $m \gg p$. The energy and momentum of the incoming and outgoing electron are:

$$
\begin{align*}
& E_{s} \simeq m+\frac{p_{s}^{2}}{2 m}-\frac{p_{s}^{4}}{8 m^{3}} \tag{45}\\
& E_{p} \simeq m+\frac{p_{p}^{2}}{2 m}-\frac{p_{p}^{4}}{8 m^{3}} \tag{46}
\end{align*}
$$

The energy lost by the incident electron is:

$$
\begin{equation*}
\nu \simeq \frac{p_{s}^{2}-p_{p}^{2}}{2 m}+\frac{p_{p}^{4}-p_{s}^{4}}{8 m^{3}} \tag{47}
\end{equation*}
$$

The 4-momentum transferred squared is:

$$
\begin{equation*}
Q^{2} \simeq\left(\vec{p}_{s}-\vec{p}_{p}\right)^{2}-2\left(\frac{p_{s}^{2}-p_{p}^{2}}{2 m}\right)^{2} \tag{48}
\end{equation*}
$$

The invariant mass of the products is:

$$
\begin{equation*}
W^{2} \simeq M^{2}+\frac{M}{m}\left(p_{s}^{2}-p_{p}^{2}+\frac{p_{p}^{4}-p_{s}^{4}}{4 m^{2}}\right)-\left(\vec{p}_{s}-\vec{p}_{p}\right)^{2}+2\left(\frac{p_{s}^{2}-p_{p}^{2}}{2 m}\right)^{2} \tag{49}
\end{equation*}
$$

5 Relativistic Limit

The relativistic limit is reached when $m \ll p$. The energy and momentum of the incoming and outgoing electron are:

$$
\begin{align*}
& E_{s} \simeq p_{s}\left(1+\frac{m^{2}}{2 p_{s}^{2}}\right) \simeq p_{s} \tag{50}\\
& E_{p} \simeq p_{p}\left(1+\frac{m^{2}}{2 p_{p}^{2}}\right) \simeq p_{p} \tag{51}
\end{align*}
$$

The energy lost by the incident electron is:

$$
\begin{equation*}
\nu \simeq\left(p_{s}-p_{p}\right)\left(1-\frac{m^{2}}{2 p_{s} p_{p}}\right) \simeq E_{s}-E_{p} \tag{52}
\end{equation*}
$$

The 4-momentum transferred squared is:

$$
\begin{equation*}
Q^{2} \simeq 4 p_{s} p_{p}\left[\sin ^{2}\left(\frac{\theta}{2}\right)+\left(\frac{m\left[p_{s}-p_{p}\right]}{2 p_{s} p_{p}}\right)^{2}\right] \simeq 4 E_{s} E_{p} \sin ^{2}\left(\frac{\theta}{2}\right) \tag{53}
\end{equation*}
$$

The invariant mass of the products is still:

$$
\begin{equation*}
W^{2}=M^{2}+2 \nu M-Q^{2} \tag{54}
\end{equation*}
$$

The minimum energy of the scattered electron is its mass:

$$
\begin{equation*}
E_{p}^{\min }=m \tag{55}
\end{equation*}
$$

In this relativistic limit, the following relation holds for elastic scattering $W=M$:

$$
\begin{equation*}
W^{2}=M^{2}+2 \nu M-Q^{2} \quad \rightarrow \quad Q^{2}=2 M \nu \tag{56}
\end{equation*}
$$

Rearranging some things gives for $E_{p}^{\max }$:

$$
\begin{equation*}
E_{p}^{\max } \simeq \frac{E_{s}}{1+\frac{2 E_{s}}{M} \sin ^{2}\left(\frac{\theta}{2}\right)} \tag{57}
\end{equation*}
$$

Consequently, the minimum energy lost by the electron also depends on the scattering angle:

$$
\begin{equation*}
\nu_{\min }=E_{s}-E_{p}^{\max } \simeq \frac{\frac{2 E_{s}^{2}}{M} \sin ^{2}\left(\frac{\theta}{2}\right)}{1+\frac{2 E_{s}}{M} \sin ^{2}\left(\frac{\theta}{2}\right)} \tag{58}
\end{equation*}
$$

The maximum energy lost by the incident electron is still:

$$
\begin{equation*}
\nu_{\max }=E_{s}-E_{p}^{\min }=E_{s}-m \tag{59}
\end{equation*}
$$

The lowest Q^{2} occurs when the electron loses most of it's energy and is still:

$$
\begin{equation*}
Q_{\min }^{2}=2 m \nu_{\max }=2 m\left(E_{s}-m\right) \tag{60}
\end{equation*}
$$

The highest Q^{2} occurs when the electron is scattered elastically:

$$
\begin{equation*}
Q_{\max }^{2}=2 M \nu_{\min } \simeq \frac{4 E_{s}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)}{1+\frac{2 E_{s}}{M} \sin ^{2}\left(\frac{\theta}{2}\right)} \tag{61}
\end{equation*}
$$

The lowest W occurs for elastic scattering and is still:

$$
\begin{equation*}
W_{\min }^{2}=M^{2}+2 \nu_{\min } M-Q_{\max }^{2}=M^{2} \tag{62}
\end{equation*}
$$

The highest W occurs when the electron loses most of its energy:

$$
\begin{equation*}
W_{\max }^{2}=M^{2}+2 \nu_{\max } M-Q_{\min }^{2} \simeq M^{2}\left(1+\frac{2 E_{s}}{M}\right) \tag{63}
\end{equation*}
$$

