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Abstract

This note is a collection of stuff on the GDH sum rule and it’s extenstions to finite Q2. There are
many conventions, units, and forms for doing and used in the integral. This note is meant to collect
these things and stuff. Greatest abstract ever...
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1 Magnetic Moments

1.1 Introduction

All units are in SI except where noted. To convert to DTU, set h̄ = c = 1. It is useful to measure atomic
magnetic moments in units of the Bohr magneton:

μB = eh̄
2Me

(SI) μB = eh̄
2Mec (cgs) (1)

where e is the elementary unit of charge, Me is the mass of the electron, h̄ is Planck’s constant divided by
2π, and c is the speed of light. One Bohr magneton is the magnetic moment expected for an electron at
tree level, meaning the value before radiative corrections increase it by an amount on the order of α, the
fine structure constant.

Nuclear magnetic moments are usually measured in units of nuclear magnetons:

μN = eh̄
2Mp

(SI) μN = eh̄
2Mpc (cgs) (2)

where Mp is the mass of the proton. One nuclear magneton is the magnetic moment expected for a proton
at tree level if it were an ideal Dirac point particle. By “Dirac,” I mean that it obeys the Dirac equation,
by “point,” I mean that it has no extended structure. This expectation is not true for the proton and this
“anomaly” will be discussed later.
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Electron spins (and the spins of other similar objects) are usually labelled by S. Nuclear spins are, by
convention, labelled by I. Therefore, the nuclear magnetic moment operator is written as:

�̇μ = μ

(
�̇I

I

)
=
(μ

I

)
�̇I (3)

where I is the spin of the nucleus, and �̇I is the spin operator. For example, for I = 1
2 , the spin operator is

composed of the Pauli matrices:

�̇I =
�̇σ

2
=

1
2

[(
0 1
1 0

)
î +

(
0 −i

+i 0

)
ĵ +

(
+1 0

0 −1

)
k̂

]
(4)

and for I = 1, the spin operator is given as:

�̇I =
1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ î +

1√
2

⎛
⎝ 0 −i 0

+i 0 −i
0 +i 0

⎞
⎠ ĵ +

⎛
⎝ +1 0 0

0 0 0
0 0 −1

⎞
⎠ k̂ (5)

The classical magnetic moment for a charged particle in motion with charge Z, mass M , and angular
momentum �L is:

�μ =
Ze

2M
�L (6)

It is for this reason that the intrinsic quantum mechanical magnetic moment operator for a particle is written
as:

�̇μ = g
Zeh̄

2M
�̇I (7)

where g is called the Landé g-factor. The magnetic moment is simply:

μ = g
Zeh̄

2M
I (8)

It is conventional to write g in units of nuclear (or Bohr) magnetons:

μ

I
= gμN → μ = gμNI (9)

To avoid confusion, the two forms of g will be defined by:

μ = g� Zeh̄

2M
I = gμNI (10)

g� =
g

Z

(
M

MP

)
(11)

Note that for the electron & proton, g = g�, and for the neutron, g� is undefined because an uncharged ideal
point-like particle would not be expected to have a magnetic moment.

1.2 Ideal Point-Like Particle of Arbitrary Spin

For an ideal point-like particle of mass M , charge Z, and spin I, the expected magnetic moment (before
radiative corrections) is:

μpoint = Zeh̄
M I (SI) μpoint = Zeh̄

Mc I (cgs) μpoint = 2Z MP
M μNI (12)

which implies that g� = 2 for all ideal point-like particles regardless of spin. To be specific, by ideal point-like
particle, I mean (following K.J.Kim and Y.S. Tsai):

1. The particle does not couple via the Strong force.

3



2. The particle obeys both P and T invariance, i.e., it does not have a permanent electric dipole moment.

3. We are considering the magnetic moment before radiative corrections are applied.

There is some disagreement in the literature about what the magnetic moment for such a particle should be.
In 1953, F.J. Belinfante [Phys. Rev. 92, 997 (1953)] conjectured that the magnetic moment for all ideal

point-like particles is:

μpoint =
Zeh̄

2M
(13)

which implies that g� = 1
I . Multiple papers have been published such as the one by C.R. Hagen & W.J.

Hurley [Phys. Rev. Lett. 24, 1381 (1970)] which contain proofs that g� = 1
I . A key ingredient in proofs of

that sort is the “minimal electromagnetic interaction” prescription:

1. Write down the free Lagrangian for a field.

2. Perform a local gauge transformation

3. Add terms that couple the field to the electromagnetic field and keep only the terms necessary to insure
gauge invariance

W. Pauli showed that additonal terms could be added to the Lagrangian that were gauge invariant, but were
not required to insure gauge invariance. [RMP 13 203 (1941)]

T.D. Lee showed that for fields with spins greater than 1
2 that follow the “minimal electromagnetic

interaction” prescription do not have unique couplings. For example, the magnetic dipole and electric
quadrapole couplings for a spin 1 particle are not unique, but they do have a fixed relationship. [PR 140(4B)
967 (1965)]

It has been argued that “good” high energy behaviour of particles should fix their couplings. Specifically,
S.Weinberg [1970 Brandeis Lecture] and K.J.Kim & Y.S. Tsai [Phys. Rev. D7, 3710 (1973)] have both made
the argument that for an ideal point-like particle to have “good” high energy behaviour, it must obey the
GDH sum rule, and therefore g� must be equal to 2. H. Pagels [PR 158, 1566 (1967)] went a step further and
argued that the forward Compton ampltude gives a definition of the charge and the anomalous magnetic
moment of a particle:

We also remark, as is well known, that the low-energy theorem provides one with an experimental
definition of the total physical charge of a particle. For forward scattering it also provides an
unambiguous definition of the anomalous magnetic moment of a particle and a sum rule for this
quantity. Not only is this the case for spin 1

2 , but also evidently for higher-spin systems as well.

More recently the g� = 2 argument has been made by S. Ferrara, M. Porrati, & V.L. Telegedi [Phys. Rev.
D46, 3529 (1992)] using string theory considerations and by S. Deser, A. Waldron, V. Pascalutsa [Phys.
Rev. D62, 105031 (2000)] in their study of electrodynamics with massive particles with a spin of 3

2 .
In the Standard Model, additional ingredients (spontaneously broken gauge symmetries, renormaliz-

abilty) add terms to the Lagrangian that are not strictly “minimal electromagnetic interactions,” but that
do fix g� = 2 for charged leptons and W bosons. To be absolutely clear, in the Standard Model, the magnetic
moments of all the charged leptons and for the W± bosons are:

μe∓ = ∓ eh̄

2Me
μμ∓ = ∓ eh̄

2Mμ
μτ∓ = ∓ eh̄

2Mτ
μW± = ± eh̄

MW
(14)

It is the magnetic moment of the W± that distinguishes between the two forms for the ideal point-like
magnetic moment and establishes equation (12) as the corrent one. This has been verified experimentally
(most famously for the electron) and the PDG2002 lists for the W± at tree level:

|g�
W± | − 2 = (0.03 ± 0.08)︸ ︷︷ ︸

Δκγ

+ (−0.012± 0.035)︸ ︷︷ ︸
λγ

(15)
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1.3 Anomalous Magnetic Moment

The anomalous magnetic moment is the part of the magnetic moment that differs from the expected ideal
point-like magnetic moment. In other words, the anomalous magnetic moment should be called the anoma-
lous part of the magnetic moment. The anomalous magnetic moment is usually written in such a way to
indicate an excess of charge:

μ = 2
(

Z
MP

M
+ κ

)
μNI = (Z + κ�)

eh̄

M
I (16)

By convention it is a unitless quantity and is related to the g-factors in the following way:

κ� = Z

(
g�

2
− 1

)
=

g

2

(
M

MP

)
− Z (17)

κ = Z
MP

M

(
g�

2
− 1

)
=

g

2
− Z

MP

M
(18)

κ

MP
=

κ�

M
(19)

Recently X. Ji & Y. Li [Phys. Lett. B591, 76 (2004)] have suggested another definition of the anomalous
magnetic moment:

μ = (2ZI + κJi)
eh̄

2M
=
[
Z +

κJi

2I

] eh̄

M
I =

(
2Z +

κJi

I

) MP

M
μNI (20)

κJi = 2Iκ� = 2I

(
M

MP

)
κ = gI

M

MP
− 2ZI (21)

This definition is a generalization of the one made by H. Pagels [PR 158, 1566 (1967)] for a spin 1 particle
with charge +1. Note that for the proton, all of the defintions become degenerate:

κP
Ji = κ�

P = κP =
gP

2
− 1 = +1.79285 (22)

and for the neutron, they are all nearly degenerate because MN ≈ MP:

κn
Ji = κ�

n =
gn

2

(
Mn

MP

)
= −1.91568 (23)

≈ κn =
gn

2
= −1.91304 (24)

Differences among these definitions truly manifest themselves when applied to nuclear particles with Z > 1,
M > MP, and I > 1

2 . For example consider the 3He nucleus:

κ3
Ji = κ�

3 =
g3

2

(
M3

MP

)
− 2 = −8.36793 (25)

κ3 =
g3

2
− 2MP

M3
= −2.79569 (26)

or for complete nondegeneracy among the definitions, consider the deuteron:

κd
Ji = gd

Md

MP
− 2 = −0.285975 (27)

κ�
d =

gd

2

(
Md

MP

)
− 1 = −0.142987 (28)

κd =
gd

2
− MP

Md
= −0.0715291 (29)

From an informal survey of the literature, unless otherwise noted, most authors are referring to κ� when
they refer to the anomalous magnetic moment. Note that for a spin 1 particle with charge +1, S.J. Brodsky
& J.R. Hiller [PRD 46, 2141 (1992)] explicitly define the anomalous magnetic moment to be κ�.
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2 Low Energy Theorems: Literature

2.1 Scattering of Light of Very Low Frequency by Systems of Spin 1
2

[F.E. Low, PR 96, 1428 (1954)] The total real Compton scattering amplitude is [equation (1.1)]:

H ′ =
(

e2

m

)
e · e′ −

(
ie

m

)(
2μ − e

m

)
k�σ · (e′ × e) (30)

−2
μ2

k
i�σ ·

[
(e× k) ×

(
e′ × k︸︷︷︸)] (31)

−i
( e

m

) μ

k
[(e · k′) e′ · (�σ × k′) − (e′ · k) e · (�σ × k)] (32)

Note that in the original text quoted above, there is a typo. Line (31) should have a prime on the last k
giving the corrected equation:

H ′ =
(

e2

m

)
e · e′ −

(
ie

m

)(
2μ − e

m

)
k�σ · (e′ × e) (33)

−2
μ2

k
i�σ · [(e× k) × (e′ × k′)] (34)

−i
( e

m

) μ

k
[(e · k′) e′ · (�σ × k′) − (e′ · k) e · (�σ × k)] (35)

For the forward (k = k′) real Compton scattering amplitude [4th line of equation (4.8)]:

H ′ =
(

e2

m

)
e · e′ + iω�σ · (e′ × e) 2

(
μ − e

2m

)2

(36)

2.2 Scattering of Low-Energy Photons by Particles of Spin 1
2

[M. Gell-Mann & M.L. Goldberger, PR 96, 1433 (1954)] They derive the same relationship three different
ways:

(1) Classically, using Kramer’s classical description of a Dirac particle; besides the Dirac mag-
netic moment considered by Kramers, a classical anomalous magnetic moment is added. (2) In
quantum mechanics, for a Dirac particle with a Pauli anomalous magnetic moment, in the lowest
order of pertubration theory. (3) Exactly in quantum field theory, for a Dirac particle interacting
with arbitrary local and renormalizable fields, for example photons and mesons.

The results of the three calculations are identical and show that the linear term depends only on
the charge, mass, and static magnetic moment of the scattering particle.

The classical result [equation (2.15)]:

f = − e2

M
(e′ · e) − ig2qS · [(n′ × e′) × (n × e)] (37)

− ieg

M
q

[
S ·

{
n (n × e) + (n× e)n

2

}
· e′ − S ·

{
n′ (n′ × e′) + (n′ × e′)n′

2

}
· e′︸︷︷︸

]
(38)

+
iegA

M
qS · (e′ × e) (39)

Note that in the original text quoted above, there is a typo. Line (38) should not have a prime on the last
e′ giving the corrected equation for the classical result:

f = − e2

M
(e′ · e) − ig2qS · [(n′ × e′) × (n × e)] (40)

− ieg

M
q

[
S ·

{
n (n × e) + (n× e)n

2

}
· e′ − S ·

{
n′ (n′ × e′) + (n′ × e′)n′

2

}
· e
]

(41)

+
iegA

M
qS · (e′ × e) (42)
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The quantum mechanical result [equation (3.2)]:

f = − e2

M
(e′ · e) − 2iμ2q�σ · [(n′ × e′) × (n × e)] (43)

− ieμ

M
q

[
�σ ·

{
n (n× e) + (n × e)n

2

}
· e′ − �σ ·

{
n′ (n′ × e′) + (n′ × e′)n′

2

}
· e
]

(44)

+
ieμA

M
q�σ · (e′ × e) (45)

which is in correspondence with the classical formula if the following identifications are made:

S ↔ �σ

2
g ↔ 2μ gA ↔ 2μA (46)

The quantum field theory result is a sum of f (A) [equation (3.14)] and f (B) [equation (3.16)]:

f (A) = − e2

M
e′ · eF − 2i

e2

4M2
(F − F2)

2
q0�σ · (n′ × e′) × (n× e) (47)

− ie

M

e

2M
(F − F2) q0 [�σ · {nn × e + n × en} · e′ − �σ · {n′n′ × e′ + n′ × e′n′} · e] (48)

+
ie

M

e

2M
(F − F2 − 1 + 4F1) q0�σ · e′ × e (49)

f (B) = − e2

M
e′ · e (1 − F ) − ie

M

eq0

2M
4F1q0�σ · e′ × e (50)

f = − e2

M
e′ · e− 2i

e2

4M2
(F − F2)

2
q0�σ · (n′ × e′) × (n× e) (51)

− ie

M

e

2M
(F − F2) q0 [�σ · {nn × e + n × en} · e′ − �σ · {n′n′ × e′ + n′ × e′n′} · e] (52)

+
ie

M

e

2M
(F − F2 − 1)︸ ︷︷ ︸

μA

q0�σ · e′ × e (53)

2.3 Low-Energy Theorems for Spin S ≥ 1

[A. Pais, PRL 19, 544 (1967)] He gives the Compton amplitude A (ω, θ, φ) as a multipole expansion defined
by [equation (7)]:

A = ε′mAmnεn =
1
M

∑
NLM

( ω

M

)N

ε′mA(NLM)
mn εnYLM (θ, φ) (54)

which to zeroth order in ω [equation (8)] and to first order in ω [equation (9)] gives:

A(000)
mn = −e2δmn

√
4π (“Thomson”) (55)

A(100)
mn = −1

4
ie2 (g − 2)2 εmnlSl

√
4π (56)

2.4 Low-Energy Compton Scattering by Arbitrary-Spin Targets

I.J. Kalet [PR 176, 2135 (1968)] generalizes the Compton scattering amplitude [equation (58)]:

T =
e2

m
�ε′ · �ε − 2iω

e

m

(
μ − e

2m

)
�ε′ × �ε · S (57)

+
ieμ

mω

[(
�ε′ · k

)
(�ε · k × S) − (�ε · k′)

(
�ε′ · k′ × S

)]
(58)

+
iμ2

ω
S ·

[
(�ε × k) ×

(
�ε′ × k′

)]
(59)
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2.5 Low-Energy Theorem for Compton Scattering

S. Saito [PR 184, 1894 (1969)] generalizes the Compton scattering amplitude [equation (5.15)]:

4∑
μ,ν=1

εμ(k′, β′) εν(k, β) Mm′μ;mν (p,Q) = i
e2

M

(
�ε′ · �ε

)
δm′m +

e

M

(
2μ − s

e

M

)
k
(
�ε′ × �ε

)
· Sm′m (60)

− eμ

kM

[
(�ε · k′)

(
�ε′ × k′

)
−
(
�ε′ · k

)
(�ε × k)

]
· Sm′m (61)

−μ2

ks

[(
�ε′ × k′

)
× (�ε + k)︸ ︷︷ ︸

]
Sm′m + O(k2) (62)

Note that there is a typo in line (62). The sum between k′ and Sm′m should be a cross product:

4∑
μ,ν=1

εμ(k′, β′) εν(k, β) Mm′μ;mν (p,Q) = i
e2

M

(
�ε′ · �ε

)
δm′m +

e

M

(
2μ − s

e

M

)
k
(
�ε′ × �ε

)
· Sm′m (63)

− eμ

kM

[
(�ε · k′)

(
�ε′ × k′

)
−
(
�ε′ · k

)
(�ε × k)

]
· Sm′m (64)

−μ2

ks

[(
�ε′ × k′

)
× (�ε × k)

]
· Sm′m + O(k2) (65)

where:

(Sm′m)τ ≡
[
(s + 1)(2s + 1)

s

] 1
2

(−1)s−m′
(

s 1 s
−m′ τ m

)
︸ ︷︷ ︸

Wigner 3j sybmol

(66)

3 The GDH Sum Rule: Original Papers

Here i write the equations as they appear exactly

3.1 Structure of the Proton and the Hyperfine Shift in Hydrogen

C.K. Iddings [PR 138, B446 (1965)] in the course of studing the hyperfine structure of Hydrogen may
have derived the sum rule [equation (2.18)]. He does reference the Low and Gell-Mann & Goldberger
papers regarding the Low Energy Theorem. It appears he had all the pieces (dispersion relations, virtual
Compton scattering amplitude) but did not put them together explicitly. He thanks Drell and Hearn in his
Acknowledgements and he was at SLAC at the same time as them. They must have known about his work
and vice versa. The point is that his paper was recieved on October 26, 1964 and it was published April 26,
1965 which is before Gerasimov. This paper is referenced in D.A. Dicus & R. Vega [Phys. Lett. B 501, 44
(2001)]. In that paper they verify the GDH sum rule on the electron upto third order in α.

3.2 A Sum Rule for Magnetic Moments and the Damping of the Nucleon Mag-
netic Moment in Nuclei

The earliest known publication of the GDH sum rule is attributed to S.B. Gerasimov. It was submitted to
Yadernaya Fizika on March 9, 1965 and published in the October 1965 issue [Yad. Fiz. 2, 598 (1965)]. The
English translation by J.G. Adashko was published in the Soviet Journal of Nuclear Physics in April 1966
[Sov. J. Nucl. Phys. 2, 430 (1966)]. For a spin 1

2 particle, the sum rule reads [equation (7)]:

2π2e2

M2
g2 =

∫
ωthr

σR(ω) − σL(ω)
ω

dω (67)

where σR(L) is the total cross section for the photon spin parallel (antiparallel) with the target spin and g
is the anomalous magnetic moment of the nucleon in nuclear magnetons. Given this definition of g, M then
has to be the mass of the proton.

8



Later in the paper, the sum rule is generalized for arbitrary spin [equation (15)]:

4π2S

(
1
S

μ0 − Q

M

)2

=
∫ ∞

ωthr

σR(ω) − σL(ω)
2

dω (68)

3.3 Exact Sum Rule for Nucleon Magnetic Moments

The S.D. Drell and A.C. Hearn [PRL 16, 908 (1966)] paper was recieved April 20, 1966 and was published
May 16, 1966 with the following form of the sum rule:∫ ∞

0

dν

ν
[σP(ν) − σA(ν)] = +

2π2α

M2
p

κ2
p = 205μb (69)

It is evaluated for the proton.

3.4 The Japanese Guys

M. Hosoda and K. Yamamoto in 1966 got as quoted in H. Pagels [PR 158, 1566 (1967)]:

4π2α 〈s3〉
(

μ

s
− Z

m

)2

=
∫ ∞

0

dp

p

[
σ+(p) − σ−(p)

]
(70)

4 The GDH Sum Rule for Spin > 1
2: Literature

4.1 Decays π0 → 2γ,η → 2γ and Sum Rules for Nucleon Compton Scattering

H. Pagels [PR 158, 1566 (1967)] derives a the forward scattering Compton amplitude [equation (B4)] and
GDH sum rule [equation (B5)] for a particle of spin 1, charge +1, and a magnetic moment of μ = (1 + κ) e

2m :

lim
p→0

4πf = −e2

m
�ε∗f · �εi

�λ∗
f · �λi − e2p

4m2
(1 − κ)2

(
�ε∗f × �εi

) · (�λ∗
f × �λi

)
+ O

(
p2
)

(71)

απ2 (1 − κ)2

m2
=

∫ ∞

0

dp

p
[σ+(p) − σ−(p)] (72)

4.2 Dynamic and Algebraic Symmetries

S. Weinberg [Lectures on Elementary Particles and Quantum Field Theory, 1970 Brandeis University Summer
Institute in Theortical Physics, Volume 1, edited by S. Deser, M. Grisaru, & H. Pendleton, MIT Press,
Cambridge, Mass. (1970), p285-393] derives the Compton scattering amplitude [equation (2.I.19)]:

f (q′λ′,qλ) → − e2

4πm
e′∗ · e1 − ieq0

2πm

(μ

J
− e

2m

)
(e′∗ × e) · J (73)

−i
( e

m

) μ

k
[(e · k′) e′ · (�σ × k′) − (e′ · k) e · (�σ × k)] (74)

− μ2

4πJ2q0

[
e′∗ · (J × q′) ,︸︷︷︸ e · (J × q)

]
(75)

Note that there is a typo on line (75) labeled by the underbrace. It should be a cross product:

f (q′λ′,qλ) → − e2

4πm
e′∗ · e1 − ieq0

2πm

(μ

J
− e

2m

)
(e′∗ × e) · J (76)

−i
( e

m

) μ

k
[(e · k′) e′ · (�σ × k′) − (e′ · k) e · (�σ × k)] (77)

− μ2

4πJ2q0
[e′∗ · (J × q′) × e · (J× q)] (78)
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Noting the following identities for scattering in the forward direction:

q = q′ = (0, 0, ω) (79)
q0 ≡ ω (80)

λ = λ′ = ±1 (81)

e = e′ =
1√
2

(1, iλ, 0) (82)

the forward scattering amplitude becomes [equation(2.I.20)]:

f (ω, λ) → − e2

4πm
1 +

λJzω

4π

(μ

J
− e

m

)2

+ O
(
ω2
)

(83)

There may be some missing factors of i in the above equations. Regardless, the GDH sum rule is [equation
(2.I.15)]:

πJz

(μ

J
− e

m

)2

=
∫ ∞

0

[σ(ω, +1) − σ(ω,−1)]
ω

dω (84)

4.3 Electromagnetic Interactions of Weakly-Bound Composite Systems

F.E. Close & L.A. Copley [Nucl. Phys. B19, 477 (1970)] derive the forward Compton amplitude [equation
(43)]:

−f (ω) = e2
�ε′
∗ · �ε
M ′ + iω

(μ

S
− e

M ′
)2

S · �ε′
∗ × �ε (85)

The GDH sum rule is [equation (44)]:

JN ′ ≡
∫ ∞

0

dω

ω

[
σP

N ′(ω) − σA
N ′(ω)

]
= π 〈S · q̂〉N ′

(
μN ′

S
− Ze

M ′

)2

(86)

4.4 Low-energy theorem for Compton Scattering and the Drell-Hearn-Gerasimov
sum rule: Exchange Currents

J.L. Friar [PRC 16, 1504 (1977)] derived the following Compton scattering amplitude for a nucleus [equation
(29)]:

T =
Z2�ε · �ε′

MB
+ iωμ̄2�S ·

(
�ε′ × k̂′

)
×
(
�ε × k̂

)
(87)

−i
Zμ̄ω

Mt

[(
�ε′ · k̂

)
�S · �ε × k̂ − �ε · k̂′

(
�S · �ε′ × k̂′

)]
(88)

+
2iωZ

Mt

(
μ̄ − Z

2Mt

)
�S · �ε × �ε′ (89)

where MB is the total nuclear mass, Mt is the nuclear mass excluding the binding energy, and μ̄ ≡ μ
S

[equation (21)]. Using the approximation that Mt ≈ MB and considering forward scattering yields the
forward scattering amplitude and the GDH sum rule respectively [equations (1),(2a),(2b),& (4)]:

f(ω) = �ε · �ε′f1(ω) + iωf2(ω)�S · �ε′ × �ε (90)

f1(0) =
Z2

MB
(91)

f2(0) =
(

μ

S
− Z

MB

)2

(92)

∫ ∞

ωth

(σP − σA)
dω′

ω′ = 4π2αS

(
μ

S
− Z

MB

)2

(93)
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4.5 Universal properties of the electromagnetic interactions of spin-one systems

S.J. Brodsky & J.R. Hiller [PRD 46, 2141 (1992)] explicitly define the anomalous magnetic moment of a
spin one system to be μa = μ1 − e

M , which leads to the corresponding GDH Sum Rule:

μ2
a =

1
π

∫ ∞

ωth

dω

ω
[σP (ω) − σA(ω)] (94)

4.6 Sum rules and spin-dependent polarizabilities of the deuteron in effective
field theory

X. Ji & Y. Li [Phys. Lett. B 591, 76 (2004)] consider the GDH sum rule for an arbitrary spin target summed
over all magnetic states. As discussed before, they define the anomalous magnetic moment as κ = μ− 2S in
units of eh̄

2Mc . Defining the GDH integrand as:

σ1 =
[

3
S(S + 1)(2S + 1)

]∑
mS

mSσmS (95)

which gives the following sum rule [equation (27)]:

αemκ2

4S2M2
=

1
2π2

∫ ∞

0

dω′σ1(ω′)
ω′ (96)

5 The GDH Sum Rule for Bound Systems: Literature

Brodksy argued with a bunch of people that the sum rule should be valid for a bound composite systems
in addition to nucleons. As far as i’m, concerned he won and it is valid for composite/bound particles.
Gerasimov in his original paper says without proof that the sum rule is true for nuclei as well and in fact
uses the sum rule to study binding effects.

N. Dombey [PRL 19, 985 (1967)]
G. Barton & N. Dombey [PR 162, 1520 (1967)]
E.A. Peterson [PRL 20, 776 (1968)]
S.J. Brodsky & J.R. Primack [PR 174, 2071 (1968)]
R.A. Krajcik & L.L. Foldy [PRL 24, 545 (1970)]
F.E. Close & L.A. Copley [Nucl. Phys. B19, 477 (1970)]

6 Derivation

6.1 Low Energy Theorem

derive LET

6.2 Forward Scattering Compton Amplitude

For forward scattering the incoming and outgoing 4-momenta are set equal q′ = q where q = (q0, �q) and
ν ≡ q0, which yields the real photon forward Compton amplitude to first order in ν:

iM (ν) = −i
Z2e2

2M

(
�ε′
∗ · �ε

)
+

ν

2

(
μ

I
− Ze

M

)2

�I ·
(
�ε′

∗ × �ε
)

+ O(ν2) (97)

By convention, the photon propagation axis will be taken as the z-axis, q̂ = ẑ = k̂. The classical electric
field polarization vector for a circularly polarized real photon is given by:

�ε± = �ε∗∓ =
1√
2

(x̂ ± iŷ) =
1√
2

(1,±i, 0) (98)
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where +(−) is for right (left) circularly polarized light. Quantum mechanically the two states of circular

polarization of the light can be associated with the two eigenstates of the photon spin operator �̇Sphoton = �̇σ:

�̇S2
photon |ε±〉 = 2 |ε±〉 (99)

Ṡzphoton |ε±〉 = ± |ε±〉 (100)

For forward scattering �ε′ = �ε, therefore the dot and cross products of the initial and final polarization vectors
are:

�ε′
∗
± · �ε± =

1√
2

(1,∓i, 0) · 1√
2

(1,±i, 0) =
1 − i2

2
= 1 (101)

�ε′
∗
± × �ε± =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
1√
2

∓i√
2

0
1√
2

±i√
2

0

∣∣∣∣∣∣∣ = +
ẑ

2

∣∣∣∣ 1 ∓i
1 ±i

∣∣∣∣ = ±iẑ (102)

Given these expressions, the helicity of a photon can be defined both classically and quantum mechanically:

h = (�ε∗ × �ε) · q̂ classical (103)

h = 〈ε| �̇Sphoton · q̂ |ε〉 QM (104)

Note that the QM expression for helicity is true for any particle with spin operator �̇S and propagation
direction q̂. For a real photon (q̂ · �ε = 0) that is in a helicity eigenstate, the helicity is ±1. To be absolutely
clear, a right (left) circularly polarized photon has its spin aligned parallel (antiparallel) to it’s propagation
direction and therefore has a helicity of +1(−1). Putting these values in gives the photon helicity dependant
forward Compton amplitude:

iM± (ν) = −i
Z2e2

2M
± i

ν

2

(
μ

I
− Ze

M

)2

�I · ẑ + O(ν2) (105)

To evaluate the projection of the target spin �I along the photon propagation axis q̂ = ẑ, we’ll replace �I · ẑ
with it’s corresponding QM expectation value

〈
�̇I · q̂

〉
where the target spin state is described by |t〉:

�̇I2 |t〉 = I(I + 1) |t〉 (106)
İz |t〉 = mI |t〉 , mI = −I . . . I (107)〈
�̇I · q̂

〉
= 〈t| �̇I · ẑ |t〉 = 〈t| İz |t〉 = mI (108)

Putting this all together and labelling the forward Compton amplitude by order in ν and by photon helicity:

M± = M±
0 + νM±

1 + O(ν2) (109)

M±
0 = −Z2e2

2M
(110)

M±
1 = ±mI

2

(
μ

I
− Ze

M

)2

(111)

6.3 The Optical Theorem

do the things that shows that an imaginary index of refraction gives an exponential decaying factor to
amplitude of the input wave The Optical Theorem relates the imaginary part of the scattering amplitude
with the total scattering cross section:

Im M±(ν) =
ν

2
σ±(ν) (112)
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6.4 Causality, Analycity, & Dispersion Relations

the regular stuff

Re f(z) =
1
π

∫ +∞

−∞

Im f(z
(113)

6.5 Crossing Symmetry

i think this is what lets you reduce the integral
∫∞
−∞ → 2

∫∞
0

6.6 The Sum Rule

Putting this all together we get in (D.T.U.):

IGDH =
∫ ∞

0

[
σ+

mI
(ν) − σ−

mI
(ν)

] dν

ν
= πmI

(
μ

I
− Ze

M

)2

(114)

The variables are defined as follows:

1. IGDH: GDH integral with the integrand evaluated at Q2 = 0

2. I: spin of the target

3. mI : expectation value of the target spin �I projected along the photon propagation axis q̂ = ẑ.

4. σ+
mI

: total cross section for a photon with positive helicity scattering from a target in the mI state

5. σ−
mI

: total cross section for a photon with negative helicity scattering from a target in the mI state

6. ν: lab energy of the incident (and forward scattered) real photon

7. μ: magnetic moment of the target

8. e: elementary unit of charge

9. Z: charge of the target in units of e

10. M : mass of the target

Note that total cross section is larger when the photon helicity and the z projection of the target spin have
the same sign. This corresponds to the case when the photon and target spins are parallel. When the spins
are antiparallel, signs are different. We can therefore rewrite the integrand in terms of σP (A), the total cross
section for scattering a photon scattering from target with spins parallel (antiparallel):

IGDH =
∫ ∞

0

[
σP

mI
(ν) − σA

mI
(ν)

] dν

ν
= π |mI |

(
μ

I
− Ze

M

)2

(115)

where now we take the absolute value of mI , the z projection of the target spin. This can be understood be
considering table (1):

σP
|mI | = σ+

+|mI | = σ−
−|mI | (116)

σA
|mI | = σ−

+|mI | = σ+
−|mI | (117)

Using the helicity to the label the cross sections, the r.h.s of the sum rule can be expressed in terms of
the anomalous magnetic moment defined in one of following three ways (in D.T.U.):

μ = gμNI = 2
(

Z
MP

M
+ κ

)
μNI = (Z + κ�)

e

M
I = (2ZI + κJi)

e

2M
(118)(

μ

I
− Ze

M

)
= e

κ

MP
= e

κ�

M
= e

κJi

2IM
(119)
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mI value |mI | −|mI |
target spin z projection ⇑ ⇓

positive (+) photon helicity ↑ ↑
negative (−) photon helicity ↓ ↓

parallel cross section, σP σ+ σ−

antiparallel cross section, σA σ− σ+

+ helicity cross section, σ+ σP σA

− helicity cross section, σ− σA σP

Table 1: For mI = |mI |, the positive (negative) helicity cross section is the parallel (antiparallel) cross
section, whereas for mI = −|mI |, the negative (positive) helicity cross section is the parallel (antiparallel)
cross section.

Identifying α = e2

4π in (D.T.U.), noting that g ≡ μ
μNI and labeling the integal by mI , this gives three

equivalent forms for the sum rule:

ImI

GDH =
4π2αmI

M2
P

κ2 κ ≡ g

2
− Z

MP

M
(120)

ImI

GDH =
4π2αmI

M2
κ�2 κ� ≡ g

2

(
M

MP

)
− Z (121)

ImI

GDH =
π2αmI

M2

(κJi

I

)2

κJi ≡ gI
M

MP
− 2ZI (122)

6.7 Summing over Target Spin States

In the previous section, the GDH sum rule was written for the target in the mI spin state. X.Ji and Y.Li
[Phys. Lett. B591, 76 (2004)] performed a multipole expansion of the Compton scattering amplitude similar
to the earlier work A. Pais and S.Saito. Consequently Ji & Li considered the following integral sum for a
circularly polarized photon beam with positive helicity:

IJL ≡
+I∑

mI=−I

∫ ∞

0

mIσ
+
mI

dν

ν
= −

(
+I∑

mI=−I

∫ ∞

0

mIσ
−
mI

dν

ν

)
(123)

where the second sum follows from equations (116) & (117). Half the difference gives:

IJL =
1
2

(
+I∑

mI=−I

∫ ∞

0

mIσ
+
mI

dν

ν

)
− 1

2

(
+I∑

mI=−I

∫ ∞

0

mIσ
−
mI

dν

ν

)
(124)

=
+I∑

mI=−I

[
mI

2

(∫ ∞

0

[
σ+

mI
− σ−

mI

] dν

ν

)]
(125)

=
+I∑

mI=−I

[mI

2
ImI

GDH

]
(126)

=
+I∑

mI=−I

[
mI

2
π2αmI

M2

(κJi

I

)2
]

(127)

=
π2α

2M2

(κJi

I

)2
[

+I∑
mI=−I

m2
I

]
(128)

The bracketed sum can be calculated:
+I∑

mI=−I

m2
I =

2I∑
n=0

(n − I)2 =

[
2I∑

n=0

n2

]
− 2I

[
2I∑

n=0

n

]
+ I2

[
2I∑

n=0

1

]
(129)
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Symbol 1H 1n 2H 3He 3H
Z +1 0 +1 +2 +1
I 1

2
1
2 1 1

2
1
2

m ± 1
2 ± 1

2 0,±1 ± 1
2 ± 1

2
M(MP ) 1.0 1.00137841870 1.99900750082 2.9931526671 2.993717
μ(μN ) +2.792847351 −1.91304273 +0.8574382329 −2.127497723 +2.9789623

g +5.585694701 −3.82608546 +0.8574382329 −4.254995446 +5.9579246
κ +1.792847 −1.913043 −0.0715291 −2.795690 +2.6449
κ� +1.792847 −1.915680 −0.142987 −8.367925 +7.9182
κJi +1.792847 −1.915680 −0.285975 −8.367925 +7.9182

Im
GDH(μb) ±204.78 ±233.16 0,±0.65194 ±497.95 ±445.70

Table 2: GDH Sum Rule evaluated for the proton, neutron, deuteron, helion, and triton. All Z & I data
from CRC Handbook of Chemistry and Physics, 75th Ed. edited by D.R. Lide (1995). Except for triton,
all M , μ, & g data from CODATA 2002 [P.J. Mohr & B.N. Taylor, RMP 77, 1 (2005)] from NIST website
for Fundamental Physical Constants [http://physics.nist.gov/cuu/Constants/index.html]. For triton data
reference information, see appendix A.

QUANTITY VALUE UNITS DEFINITION
α (137.03599911)−1 unitless fine structure constant

Mp 938.272029 MeV/c2 mass of proton
Mn 939.565360 MeV/c2 mass of neutron
Md 1875.61282 MeV/c2 mass of deuteron
M3 2808.39142 MeV/c2 mass of helion
c 299792458 m/s speed of light in vaccum
ε0 107/

(
4πc2

)
F/m electric constant

h̄ 1.05457168× 10−34 J · s Planck’s constant over 2π
h̄c 197.326968 MeV · fm conversion constant
1 b 100 fm2 barn, unit of cross section
1 eV 1.60217653× 10−19 J electron-volt, unit of energy

Table 3: A bunch of relevant constants and stuff are listed above. All numbers are CODATA 2002 via NIST
website. [see caption for table (2) for full citation]

=
2I(2I + 1)(4I + 1)

6
− 2I

2I(2I + 1)
2

+ I2 (2I + 1) (130)

=
I

3
[
8I2 + 6I + 1 − 12I2 − 6I + 6I2 + 3I

]
(131)

=
I

3
[
2I2 + 3I + 1

]
(132)

=
I

3
(I + 1)(2I + 1) (133)

This gives a modified version of the GDH sum rule which is equivalent to equations (95) & (96):

IJL =
+I∑

mI=−I

∫ ∞

0

mIσ
+
mI

dν

ν
=

π2α

6M2

[
(I + 1)(2I + 1)

I

]
κ2

Ji (134)

7 Evaluating the GDH Sum Rule

To actually calculate the sum rule, one has to convert the sum into measured units, which amounts to
putting the factors of h̄ and c back into the equation. The l.h.s. of the sum rule evaluates to a quantity that
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has the units of a cross section or distance squared. The only quantity on the r.h.s. of the sum rule that
is not dimensionless is the mass squared. Therefore some combination of h̄, c, and mass squared needs to
result in distance squared:

[h̄]2

[M ]2[c]2
=

[h̄]2c2

[Mc2]2
=

J2s2 m2

s2

J2
= m2 (135)

Putting these in these scale factors:

ImI

GDH =
4π2αmIh̄

2

M2
P c2

κ2 κ ≡ g

2
− Z

MP

M
(136)

ImI

GDH =
4π2αmIh̄

2

M2c2
κ�2 κ� ≡ g

2

(
M

MP

)
− Z (137)

ImI

GDH =
π2αmIh̄

2

M2c2

(κJi

I

)2

κJi ≡ gI
M

MP
− 2ZI (138)

It is usefull to express the sum rule in terms of the Gerasimov cross section defined by:

σG ≡ 2π2αh̄2

M2
P c2

= 63.7104 μb (139)

This gives the following relations:

ImI

GDH = 2σGmIκ
2 κ ≡ g

2
− Z

MP

M
(140)

ImI

GDH =
2σGmI(

M
MP

)2 κ�2 κ� ≡ g

2

(
M

MP

)
− Z (141)

ImI

GDH =
2σGmI(

M
MP

)2

(κJi

2I

)2

κJi ≡ gI
M

MP
− 2ZI (142)
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The GDH sum rule for real circularly polarized photons incident on a spin I target in SI units:

Im
GDH =

∫ ∞

0

[
σ+

m(ν) − σ−
m(ν)

] dν

ν
= π2αm

(
μ − μpoint

MP μNI

)2

(143)

= 2σGmκ2 =
2σGm

M2
κ�2 =

σGm

2M2I2
κ2

Ji (144)

where the following quantities are calculated by:

μ = gμNI (145)

μpoint ≡ 2Z

M
μNI (146)

σG ≡ 2π2αh̄2

M2
P c2

= 63.7104 μb = 0.1636204 GeV−2 = 0.00637104 fm−2 (147)

κ ≡ g

2
− Z

M
(148)

κ� ≡ g

2
M − Z (149)

κJi ≡ gIM − 2ZI (150)

and all of the quantities are defined below:

Z: charge of the target in units of e

M : mass of the target in units of the proton mass MP

MP : proton mass in SI units

I: spin of the target

μ: magnetic moment of the target in SI units

μpoint: magnetic moment of the target if it were an ideal point-like object in SI units

μN : nuclear magnetons in SI units

g: Landé g-factor

σG: Gerasimov cross section, defined by equation (147)

m: projection of the target spin �I onto the photon propagation axis

κ, κ�, κJi: anomalous (part of the the) magnetic moment of the target defined in various ways

ν: lab energy of the incident (and scattered) photon

σ+
m: total cross section for scattering positive helicity photons

σ−
m: total cross section for scattering negative helicity photons
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μt/μp uncertainty Authors Citation
1.06666 0.00010 H.L. Anderson Phys. Rev. 71, 372 (1947)

A. Novick
1.067 0.001 F. Bloch Phys. Rev. 71, 373 (1947)

1.066636 0.00001 A.C. Graves Phys. Rev. 71, 551 (1947)
M. Packard
R.W. Spence

1.06663986 0.00000011 W. Duffy, Jr. Phys. Rev. 115, 1012 (1959)

Table 4: List of various measurements of the relative triton magnetic moment.

8 Extended GDH Integrals

IA, IB , IC , and all that photon flux factor (Hand, Gilman, etc.) stuff

9 Extended GDH Sum Rules (Q2 > 0)

That Ji & Osbourne Paper

10 Chiral Slopes at Q2 = 0

11 The MAID Model

12 Review of Experimental Efforts

12.1 real photon GDH - Mainz

12.2 High Q2 GDH - Hermes

12.3 JLab Mid Q2 Neutron

E94010

12.4 JLab Low Q2 Neutron

E97110, Vince and me

12.5 JLab Mid Q2 Proton/Deuteron

Renee Fatemi and Yelena Prok

12.6 JLab Low Q2 Proton/Deuteron

Josh Pierce and John Mellor
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12.7 HIGS at TUNL

A Triton Data

A.1 Spin & Magnetic Moment

A casual search through PROLA yields four papers describing measurements of the magnetic moment of the
triton (tritium nucleus). The results are summarized in table (4). All of the measurements compared the
resonance frequencies of the triton to the proton. These measurements occured while the triton and proton
were in atoms, meaning the nuclear charge was shielded. CODATA 2002 shows that a shielded proton has a
magnetic moment that is smaller by about 26 ppm. The shielding should be similar for both the triton and
proton, therefore this effect should cancel to first order. A wieghted fit to the data in the table multiplied
by the proton magnetic moment gives the triton magnetic moment in nuclear magnetons:

μt

μN
= 2.9789623 (151)

In addition, the Los Alamos group argued that the spin of the triton has to be 1
2 on the basis of the ratio of

the size of the two signals. F. Bloch had earlier derived in his famous “Nuclear Induction” paper [Phys. Rev.
70, 460 (1946)] an equation estimating the size of signal induced by nuclear spins in thermal equilibrium
[equation (29)]:

V = ±NAn
j(j + 1)

3kT
h2γω2 cosωt

1 + δ2

1
2

(152)

where N is the number of turns in the pick up coil, A is the area of the pick up coils, n is the density of
the nuclear spins, j is the spin, γ is the gyromagnetic ratio, ω is the frequency of the rf field, and δ is the
detuning from resonance. In both of the Bloch,et al measurements the ratio of the size of the signals was
approximately the ratio of the densities of tritium and hydrogen which indicated that the nuclear spins were
the same. E.B. Nelson & J.E. Nafe [Phys. Rev. 75, 1194 (1948)] verified that the triton spin was 1

2 by
observing the hyperfine structuce of tritium using the atomic beam resonance methods popular during that
time at Columbia University.

A.2 Mass ratio with proton

The mass of the triton (just the nucleus) itself is difficult to find. The tritium mass is easily found but
includes the effect of a bound electron. Given known masses for the deuteron, helion, alpha particle (4He
nucleus), deuterium, helium-3, and helium-4 (see table (5)) an estimate for the triton mass can be found.
It is assumed that an atomic mass can be written as a sum of its constituent masses (mp, mn, me), binding
energies (bn, be), and repulsion energies (rn, re):

A = pmp + nmn +

δN︷ ︸︸ ︷
f(n, p)bn + g(n, p)rn︸ ︷︷ ︸

nuclear mass

+ pme +

δA︷ ︸︸ ︷
j(n, p)be + k(n, p)re︸ ︷︷ ︸
electrical mass

(153)

where f, g, j, k are some unknown functions of proton and neutron numbers p, n.
Obviously, the nuclear binding effects have a much greater effect on the atomic mass than the electrical

mass. Because of isospin symmetry, one would expect that the binding strong force between nucleons is the
same. Therefore the total effect of the strong binding force should scale with the distinct number of possible
nucleon pairs. This gives the following guess for f(n, p) = n+pC2 = (n + p)(n + p − 1)/2. The electrostatic
repulsion of the protons should scale with the number of distinct number of proton pairs. We’ll assume that
the neutrons contribute to the electrostatic interaction within the nucleus by some shielding to the proton
repulsion. This gives the following guess for g(n, p) = (1 + sn) pC2 = (1 + sn)p(p − 1)/2. Putting all this
together, our guess for the functional form of δN is:

δN = f(n, p)bn + g(n, p)rp ≈ (n + p)(n + p − 1)
bn

2
+ (1 − s0n)(p − 1)p

rp

2
(154)
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electron 5.4857990945× 10−4 neutron 1.00866491560 δA(ppm) δN(ppm)
hydrogen 1.0078250321 proton 1.00727646688 -0.0146895 0.0
deuterium 2.0141017780 deuteron 2.01355321270 -0.0146095 -2388.16978

tritium 3.0160492675 triton 3.01550070212 -0.0145295* -9105.59596*
helium-3 3.0160293097 helion 3.0149322434 -0.0935189 -8285.60596
helium-4 4.0026032497 α-particle 4.001506179149 -0.0892589 -30376.58582

Table 5: List of relevant masses in relative atomic mass units. All values from NIST website, except *-values
which are calculated in the text.

where bn is the average binding between two nucleons, rp is the average electrostatic repulsion between the
protons, and s0 is the sheilding of the proton charge by the neutron. One good sign is that this formula
predicts δN = 0 for the nucleus of the hydrogen atom. We have 3 free parameters and 4 atoms of known
values. However 4He has a “magic number” of nucleons and therefore is very stable and almost certainly
does not follow from the previous arguments. If we assume that the triton mass is equal to the helion mass
plus the neutron-proton mass difference, then the value for δAt is wildly inconsistent with known values for
other atoms:

δNt ≈ δN3 (155)
mt ≈ m3 − mp + mn = 3.01632069212 (156)

δAt ≈ At − mt − me = −820.00453 (ppm) (157)

On the other hand, δA is quite small and fairly constant for hydrogen and deuterium. Therefore an
estimate for the triton mass can be gotten by the following:

δAt ≈ 2δAd − δA1 = −0.0145295 (ppm) (158)
mt ≈ At − me − δAt = 3.01550070212 (159)

δNt ≈ mt − mp − 2mn = −9105.59596 (ppm) (160)

which gives the triton to proton mass ratio:

mt

mp
= Mt = 2.993717 (161)

20


