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Abstract

Light can be easily linearly or circularly polarized. The degree of circular polarization can be measured
and modulated. Light preferrably interacts with atoms via a dipole interaction. Atoms in a magnetic field
anisotropically couple to the different polarization components of the light. If the light is in the form of a
weak probe beam, then it negligibly effects the atomic vapor. Consequently the atomic polarizability can
be calculated using pertubration theory. The effect on the amplitude and phase of the weak probe beam as
a function of wavelength is given by the imaginary and real parts of the complex index of refraction of the
atomic vapor, which is derived directly from the atomic polarizability. These quantities will be evaluated for
alkali metal atoms. Observables related to this interaction will be used to infer the alkali polarization, alkali
density, hybrid alkali density ratio, noble gas polarization, noble gas density, and various rates relevant to
spin-exchange optical pumping. Experimental considerations will be discussed. This note is meant to be
detailed, explicit, and self-contained.
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Chapter 1

Quantum Mechanical Treatment of an
Alkali Atom in a Magnetic Field

1.1 Notation & Conventions

All quantities will be denoted in SI. Angular momentum operators will be unitless:

�̂J2 |J,mJ〉 = J(J + 1) |J,mJ〉 (1.1)
Ĵz |J,mJ〉 = mJ |J,mJ〉 ,mJ = −J..J (1.2)

Ĵ± = Ĵx ± iĴy (1.3)

Ĵ± |J,mJ〉 =
√
J(J + 1) −mJ(mJ ± 1) |J,mJ ± 1〉 (1.4)

The statistical weight is denoted by [J ] and is defined by [J ] = 2J + 1. The magnetic moment arising from
spin will be written:

�μS =
μS

S
�S (1.5)

μS

S
= gSμx (1.6)

The magnetic moment arising from the orbital angular momentum will be written:

�μL = μL
�L (1.7)

μL = gLμx (1.8)

g is the unitless Landé factor. Note that the sign of the magnetic moment is carried implicitly in g or
alternatively μJ . For example, g ≈ −2 for the electron, g ≈ 2(2.79) for the proton, and g ≈ 2(−1.91) for
the neutron. In all cases, the g-factor will be left unevaluated in the equations. However, equations will be
written such that approximations can be made without loss of accuracy, for example:

−3
2
gS = 3

[−2
gS

]
︸ ︷︷ ︸
≈1.00116

≈ 3 (1.9)

For the electron spin, gS does not equal −2 exactly due to radiative corrections. There is no reason why
gL must equal exactly −1. This point is discussed at great length in [Ramsey, Norman F.Molecular Beams.
London: OUP, section IX.5.1 (1963)]. Based on experimental results from alkali atoms, |gL| differs from
unity on order of parts per million. Therefore, for L ≥ 1, we’ll take gL = −1.0.

The units are carried in μx, which is the Bohr magneton (μB) for the electron and the nuclear magneton
(μN ) for nuclei. The different angular momenta will be identified as:
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• �S is the sum of the spins of each electron in the atom,

• �L is the sum of the orbital angular momenta of each electron in the atom,

• �J
(
= �L+ �S

)
is the total electronic angular momentum of the atom,

• �I is the spin of the nucleus,

• �F
(
= �I + �J

)
is the total internal angular momentum of the atom.

Operators and matrices will be denoted by hats M̂ . Hamiltonians will be H, energies will be E, frequencies
will be ν (with units of Hz), and angular frequencies ω (with units of rad·Hz).

1.2 Fine Structure (Ignoring Nuclear Spin)

1.2.1 Zero Field Eigenbasis

The basic structure of the atomic hamiltonian is summarized below, more details can be found in (Woodgate,
G.K. Elementary Atomic Structure, Second Edition. Oxford: Oxford University Press, 2002):

1. The electrostatic interaction within an atom can be expressed as a central and a non-central force.

2. The central force is a Coulomb interaction between the electrons and an effective nuclear charge.

3. The non-central force is the residual electrostatic repulsion among the electrons.

4. For most atoms, the non-central force dominates over the spin-orbit coupling.

5. Because the non-central forces are larger, the orbital angular momenta of the electrons are correlated.

6. Because of Fermi-Dirac statistics, the total electronic spin and the total electronic orbital angular
momentum is zero for closed shells.

7. Because of spherical symmetry, the non-central force is independant of orbital angular momentum for
closed shells. Therefore, the non-central force is relevant only between the valence electrons.

8. In this limit, the spin-orbit coupling occurs between the total valence electronic spin and the total
valence electronic orbital angular momentum.

9. Finally, all higher order interactions, such as quadrapole interactions, will usually be ignored.

Consider H0 with Hes, electrostatic interaction, and Hso, spin-orbit coupling:

H0 = Hes + Hso (1.10)

Under the conditions described before, the form of Hso is

�J 2 = (�L+ �S)2 = �L 2 + 2�L · �S + �S 2 (1.11)

Hso = Aso
�L · �S =

Aso

2
( �J 2 − �L 2 − �S 2) (1.12)

From the second form of Hso above, it should be clear that J , L, and S are good quantum numbers, i.e.,
they commute with the hamiltonian. A useful eigenbasis with those quantum number is the LS-coupling
scheme {|J,mJ〉}. Each group of degenerate eignenstates is labeled by a Russell-Saunders [Russell, H.N.
and F.A. Saunders. Astrophysical Journal (61). p28 (1925)] term of the form

n2S+1LJ (1.13)

where n is the principal quantum number which labels the valence configuration. L labels the valence orbital
in the following way:
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• L = 0 → L = S

• L = 1 → L = P

• L = 2 → L = D , and so on

All closed shells have
�Lshell = �Sshell = 0 (1.14)

For a neutral alkali metal atom, �J , �L, and �S all refer to the single valence electron. In the ground state,
J = 1

2 and the RS term is n2S 1
2
. The first two excited states have J = 1

2 and J = 3
2 and are labeled n2P 1

2

and n2P 3
2
. Appendix C.2 contains an expansion of the LS-coupling basis {|J,mJ〉} in the uncoupled L, S

basis {|L,mL〉 |S,mS〉}.
Spin-orbit coupling breaks the degeneracy of these n2P states and results in fine structure. Fine structure

also refers to other corrections, including relativistic ones, that are of the same order of magnitude. However,
except for Hydrogen, these corrections are much smaller than the spin-orbit coupling. (where did i read that?)
Regardless, these corrections only shift the energies collectively, independent of mJ and they do not mix
the eigenstates. The transitions from the ground state to the first two excited states n2S 1

2
→ n2P 1

2
and

n2S 1
2
→ n2P 3

2
are called the D1 and D2 transitions respectively.

1.2.2 Hamiltonian

The Hamiltonian describing the atom in a magnetic field �B is

H = H0 − �μL · �B − �μS · �B = Hes + Hso − �μL · �B − �μS · �B (1.15)

To recap:

• The first term Hes contains all the terms that do not involve the electron spin.

• The second term is the spin-orbit interaction.

• The third and fourth terms are the Zeeman terms for the orbital and spin angular momentum respec-
tively.

Using �B = Bẑ & Jz = Lz + Sz:

H = Hes + Hso − �μL · �B − �μS · �B (1.16)

= Hes +
Aso

2

(
�J 2 − �L 2 − �S 2

)
− gLμBLzB − gSμBSzB (1.17)

= Hes +
Aso

2

(
�J 2 − �L 2 − �S 2

)
− gLμB (Jz − Sz)B − gSμBSzB (1.18)

= Hes +
(
−Aso

2

(
�L 2 + �S 2

)
− gLμBBJz

)
+ H′ (1.19)

H′ =
Aso

2
�J 2 − (gS − gL)μBBSz (1.20)

gS � −2 (1.21)

gL =
{

0 , L = 0
−1 , L > 0

}
(1.22)

The hamiltonian is separated into three terms intentionally. States within a n2S+1L term with the same
mJ but different J are mixed by the Zeeman interaction. This means that the first two terms are diagonal
simultaneously in the {|J,mJ〉} basis and the eigenbasis of H. Therefore, only H′ has to be diagonalized.
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1.2.3 Energies

Matrix Subblocks

Let’s specialize to the case S = 1
2 , since an alkali metal atom is being considered. J can be L± 1

2 . Therefore
in the {|J,mJ〉} basis, the Sz term is block diagonal with subblocks no greater than 2 by 2 in size. The 2 by
2 subblocks are made of the states with different J and same mJ . For the special case of mJ = ± (

L+ 1
2

)
,

there are no other states to mix with. Thus, they reside in subblocks of size 1 by 1. This is true for the
mJ = ± 1

2 states of the ground state term n2S 1
2

and the mJ = ± 3
2 states of the excited state term n2P 3

2
.

On the other hand, the mJ = ± 1
2 states of the terms n2P 1

2 , 3
2

mix and therefore need to be diagonalized. To
diagonalize H, we only have to diagonalize each subblock of H′,

H′ =
Aso

2
�J 2 − (gS − gL)μBBSz (1.23)

Ĥ′ =
Aso

2

[ (
L+ 1

2

) (
L+ 3

2

)
0

0
(
L− 1

2

) (
L+ 1

2

) ]
− (gS − gL)μBB

[
α+ β−
β+ α−

]
(1.24)

α± =
〈
L± 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.25)

β± =
〈
L∓ 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.26)

The first term can be simplified to give:

Aso

2
�̂J2 =

Aso

2

(
L+

1
2

)(
L+

1
2

+
[

1 0
0 −1

])
(1.27)

α± & β± in the second term are most easily calculated in the uncoupled {|L,mL〉 |S,mS〉} basis:

|L,mL〉 |S,mS〉 = |mL,mS〉 = |mL〉L |mS〉S (1.28)

|J,mJ〉 =
∑

|mL,mS〉 〈mL,mS |J,mJ〉︸ ︷︷ ︸
Clebsch−Gordon

(1.29)

Using formulas for Clebsch-Gordon coefficients from the appendix (C.1.1):〈
mJ ∓ 1

2
,±1

2
| L+

1
2
,mJ

〉
=

1√
[L]

√
L+

1
2
±mJ

(1.30)〈
mJ ∓ 1

2
,±1

2
| L− 1

2
,mJ

〉
=

∓1√
[L]

√
L+

1
2
∓mJ

For α±:

α± =
〈
L± 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.31)

=

1
2∑

mS ,m′
S=− 1

2

〈mJ −m′
S ,m

′
S | Ŝz |mJ −mS ,mS〉

× 〈J,mJ |mJ −m′
S ,m

′
S〉 〈mJ −mS ,mS |J,mJ〉 (1.32)

=

1
2∑

mS=− 1
2

mS |〈mJ −mS ,mS|J,mJ〉|2 , J = L± 1
2

(1.33)

=
1
2

(
L+ 1

2 ±mJ − L− 1
2 ±mJ

[L]

)
(1.34)

= ±
(
mJ

[L]

)
= ±(α) (1.35)
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For β±:

β± =
〈
L∓ 1

2
,mJ

∣∣∣∣ Ŝz

∣∣∣∣L± 1
2
,mJ

〉
(1.36)

=

1
2∑

mS ,m′
S=− 1

2

〈mJ −m′
S ,m

′
S | Ŝz |mJ −mS ,mS〉

×
〈
L∓ 1

2
,mJ |mJ −m′

S ,m
′
S

〉〈
mJ −mS ,mS |L± 1

2
,mJ

〉
(1.37)

=

1
2∑

mS=− 1
2

mS

〈
L∓ 1

2
,mJ |mJ −mS ,mS

〉〈
mJ −mS ,mS |L± 1

2
,mJ

〉
(1.38)

= +
1
2

⎛
⎝−

√(
L+ 1

2 ∓mJ

) (
L+ 1

2 ±mJ

)
[L]

⎞
⎠− 1

2

⎛
⎝+

√(
L+ 1

2 ±mJ

) (
L+ 1

2 ∓mJ

)
[L]

⎞
⎠ (1.39)

= −
⎛
⎝

√(
L+ 1

2

)2 −m2
J

[L]

⎞
⎠ = − (β) (1.40)

To solve for the energies, we only to diagonalize the last term in H′:

H′ =
Aso

2

(
L+

1
2

)(
L+

1
2

+
[

1 0
0 −1

])
− (gS − gL)μBB

[
α+ β−
β+ α−

]
(1.41)

=
Aso

2

(
L+

1
2

)(
L+

1
2

+
[

1 0
0 −1

])
+ (gL − gS)μBB

[
α −β

−β −α
]

(1.42)

=
Aso

2

(
L+

1
2

)2

+
Aso

2

(
L+

1
2

)([
1 0
0 −1

]
+ 2

(gL − gS)μBB

Aso

(
L+ 1

2

) [
α −β

−β −α
])

(1.43)

=
Aso

2

(
L+

1
2

)2

+
Aso

2

(
L+

1
2

)[
1 + 2αy −2βy
−2βy − (1 + 2αy)

]
︸ ︷︷ ︸

M̂

(1.44)

y = (gL − gS)
μBB

Aso

(
L+ 1

2

) (1.45)

Diagonalization

This is done by solving the secular equation:

0 = det
(
M̂ − Îλ

)
(1.46)

0 =
∣∣∣∣ 1 + 2αy − λ −2βy

−2βy − (1 + 2αy + λ)

∣∣∣∣ (1.47)

0 = − (1 + 2αy − λ) (1 + 2αy + λ) − (2βy)2 (1.48)

0 = λ2 − (1 + 2αy)2 − (2βy)2 (1.49)

λ = ±
√

(1 + 2αy)2 + (2βy)2 (1.50)

= ±
√

1 + 4αy + 4 (α2 + β2) y2 (1.51)

Using the eqns. (1.35) and (1.40), the following useful relations are derived:

α2 + β2 =
m2

J +
(
L+ 1

2

)2 −m2
J

[L]2
=

(
L+ 1

2

)2

22
(
L+ 1

2

)2 =
1
4

(1.52)
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4α2 + 4β2 = 1 (1.53)

We get the eigenvalues:
±

(
λ =

√
1 + 4αy + y2

)
(1.54)

The total energy is therefore:

E = E0 − Aso

2

(
L(L+ 1) +

1
2

(
1
2

+ 1
))

− gLμBmJB + E′ (1.55)

E′ =
Aso

2

(
L+

1
2

)2

± Aso

2

(
L+

1
2

)
λ (1.56)

The ±λ eigenvalue is used for states evolving from the J = L ± 1
2 term. In the zero field case, B = 0, we

find the spin-orbit (fine structure) splitting between the two terms is:

ΔE =
Aso[L]

2
= hνso (1.57)

Relabeling the energies without spin-orbit coupling and without field as EL
0 and relating Aso to the zero

field spin-orbit splitting hνso, for L > 0, we get:

E = EL
0 − hνso

2[L]
+ μBmJB ± hνso

2

√
1 +

4mJ

[L]
y + y2 (1.58)

y =
(

2
[
gS

−2

]
− 1

)
μBB

hνso
(1.59)

where ± refers to the states with J = L ± 1
2 . When L = 0, gL = 0 and the positive root of the square root

is taken, which gives the energies for the n2S 1
2

term:

L = 0 → J = S → mJ = mS = ±1
2

(1.60)

y =
[
gS

−2

]
2μBB

hνso
(1.61)

E± 1
2

= ES
0 − hνso

2
+
hνso

2

√
1 ± 4

2
y + y2 (1.62)

= ES
0 − hνso

2
+
hνso

2
(1 ± y) (1.63)

= ES
0 ± hνso

2

([
gS

−2

]
2μBB

hνso

)
(1.64)

= ES
0 ±

[
gS

−2

]
μBB (1.65)

= ES
0 − gSμBBmS (1.66)

where ± refers to the sign ofmS = ± 1
2 . Note that y is a unitless quantity that gives the relative measure of the

size of the Zeeman interaction with respect to the spin-orbit interaction. For example the Zeeman interaction
is comparable to the spin-orbit interaction (y ≈ 1) for potassium and rubidium when B ≈ 124 T & 510 T
respectively, see table (A.3). Because of the strength of the spin-orbit interaction, J is almost always a very
good quantum number for most alkali metals.

The energies of the mJ = ±(L+ 1
2 ) states in the J = L+ 1

2 term are:

E±(L+ 1
2 ) = EL

0 − hνso

2[L]
± μB

(
L+

1
2

)
B +

hνso

2

√
1 ± 4

(
L+ 1

2

)
[L]

y + y2 (1.67)

8



= EL
0 − hνso

2[L]
± μB

(
L+

1
2

)
B +

hνso

2

√
1 ± 2y + y2 (1.68)

= EL
0 − hνso

2[L]
± μB

(
L+

1
2

)
B +

hνso

2
(1 ± y) (1.69)

= EL
0 +

L

[L]
hνso ± μB

(
L+

1
2

)
B ∓ hνso

2
(1 + gS)

μBB

hνso
(1.70)

= EL
0 +

L

[L]
hνso ± μBB

(
L+

1
2
− 1 + gS

2

)
(1.71)

= EL
0 +

L

[L]
hνso ±

(
L+

[
gS

−2

])
μBB (1.72)

Low Field Energies

At low field, see table (A.3), to second order in B, the energies for the J = L± 1
2 terms with L > 0 are:

E = EL
0 − hνso

2[L]
+ μBmJB ± hνso

2

(
1 +

2mJ

[L]
y +

1
2

(
1 − 4m2

J

[L]2

)
y2 + O(y3)

)
(1.73)

±
(
E − EL

0

hνso

)
= ∓ 1

2[L]
+ ±mJ

μBB

hνso
+

1
2

+
mJ

[L]
y +

1
4

(
1 − 4m2

J

[L]2

)
y2 + O(y3) (1.74)

=
1
2

(
1 ∓ 1

[L]

)
±mJ

μBB

hνso
+
mJ

[L]

(
2
[
gS

−2

]
− 1

)
μBB

hνso
+

1
4

(
1 − 4m2

J

[L]2

)
y2 (1.75)

=
L+ 1

2 ∓ 1
2

[L]
+
mJ

[L]

(
2
[
gS

−2

]
− 1 ± [L]

)
μBB

hνso
+

1
4

(
1 − 4m2

J

[L]2

)
y2 (1.76)

The energies for the three lowest RS terms of alkali metals to second order in B are:

ES
1
2 ,− 1

2
= ES

0 −
[
gS

−2

]
μBB (1.77)

ES
1
2 ,+ 1

2
= ES

0 +
[
gS

−2

]
μBB (1.78)

EP
1
2 ,− 1

2
= EP

0 −
(

2
3

)
hνso −

[
2 +

gS

2

](1
3

)
μBB −

(
2
9
y2

)
hνso (1.79)

EP
1
2 ,+ 1

2
= EP

0 −
(

2
3

)
hνso +

[
2 +

gS

2

](1
3

)
μBB −

(
2
9
y2

)
hνso (1.80)

EP
3
2 ,− 3

2
= EP

0 +
(

1
3

)
hνso −

[
1
2
− gS

4

]
2μBB (1.81)

EP
3
2 ,− 1

2
= EP

0 +
(

1
3

)
hνso −

[
1
2
− gS

4

](
2
3

)
μBB +

(
2
9
y2

)
hνso (1.82)

EP
3
2 ,+ 1

2
= EP

0 +
(

1
3

)
hνso +

[
1
2
− gS

4

](
2
3

)
μBB +

(
2
9
y2

)
hνso (1.83)

EP
3
2 ,+ 3

2
= EP

0 +
(

1
3

)
hνso +

[
1
2
− gS

4

]
2μBB (1.84)

where the bracketed terms evaluate to 1 when the approximation gS ≈ −2 is made.

1.2.4 Eigenstates: Fine Structure Mixing

Orthonormality of the Mixing Coefficients

At zero field, with S = 1
2 , and for a given L > 0, there are in general two states with the same mJ , but with

different J . Note however that when |mJ | = L+ 1
2 , there is only one state with the quantum numbers mJ ,

9



J , and L. As noted before, the B-field mixes states with the same L, the same mJ , but different J . The
result of the mixing are two states with the same mJ but with different J . At low field, the mixed states
are, to a very good approximation, the zero field eigenstates with a small admixture of the other eigenstate.
The mixed states, labeled by ±, approach the the zero field states with J = L ± 1

2 as the field approches
zero. Because J is still a very good quantum number, we will represent {|L±,mJ 〉} in the {|J,mJ〉} basis:

|L±,mJ〉 = a±1

∣∣∣∣L+
1
2
,mJ

〉
+ a±2

∣∣∣∣L− 1
2
,mJ

〉
(1.85)

where a±1 , a
±
2 are the fine structure mixing coefficients, which we choose to be real. To repeat, a zero field,

L± = PL± 1
2
. The mixed eigenstates must be orthonormal:

〈
m±

J |m±
J

〉
=

(
a±1

)2
+

(
a±2

)2
= 1 (1.86)〈

m−
J |m+

J

〉
= a−1 a

+
1 + a−2 a

+
2 = 0 (1.87)

Some algebra gives: (
a±2

)2
= 1 − (

a±1
)2

(1.88)(
a−1 a

+
1

)2
=

(
a−2 a

+
2

)2(
a−1 a

+
1

)2
= 1 +

(
a−1 a

+
1

)2 − (
a−1

)2 − (
a+
1

)2

1 =
(
a−1

)2
+

(
a+
1

)2
(1.89)(

a−1
)2

=
(
a+
2

)2
(1.90)(

a−2
)2

=
(
a+
1

)2
(1.91)

a−1
a+
2

= −a
−
2

a−1
(1.92)

a±1 = ±a∓2 (1.93)

To recap, orthonormality implies equation (1.93).

Solving for the Mixing Coefficients

The values for a±1,2 come from the diagonalization of eqn. (1.44) where λ± are the eigenvalues given by
eqn. (1.54) and α and β are defined by eqns. (1.35) and (1.40):

M̂ |a〉 = ±λ |a〉 (1.94)[
1 + 2αy −2βy
−2βy − (1 + 2αy)

] [
a±1
a±2

]
= ±λ

[
a±1
a±2

]
(1.95)

(1 + 2αy) a±1 − 2βya±2 = ±λa±1 (1.96)
−2βya±2 − (1 + 2αy) a±1 = ±λa±2 (1.97)

These last two equations are redundant. Taking the former, using the normalization condition, and some
algebra gives:

(1 + 2αy ∓ λ) a±1 = 2βya±2 (1.98)

(1 + 2αy ∓ λ)2
(
a±1

)2
= 4β2y2

(
1 − (

a±1
)2
)

(1.99)

a±1 =
2βy√

(1 + 2αy ∓ λ)2 + 4β2y2

(1.100)

a±2 =
1 + 2αy ∓ λ√

(1 + 2αy ∓ λ)2 + 4β2y2

(1.101)
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The ± sign is taken for states evolving from the J = L± 1
2 term. Again even though J is not a rigourously

good quantum number like mJ , at low fields it is still very good. This can be more easily seen by expanding
a±1,2 at low field to second order in y(B).

Low Field Expansion

The low field expansions are performed using the following useful relations (Spiegel, Murray R. Mathematical
Handbook of Formulas and Tables, New York: McGraw-Hill, 1993. page 110, equations 20.10 and 20.11):

√
1 + x � 1 +

1
2
x− 1

8
x2 +

1
16
x3 − 5

128
x4 + O(x5) (1.102)

1√
1 + x

� 1 − 1
2
x+

3
8
x2 − 5

16
x3 +

35
128

x4 + O(x5) (1.103)

√
1 + ax+ bx2 � 1 +

a

2
x+

(
b

2
− a2

8

)
x2 +

(
a3

16
− ab

4

)
x3 +

(
3a2b

16
− b2

8
− 5a4

128

)
x4 + O(x5)

(1.104)
1√

1 + ax+ bx2
� 1 − a

2
x+

(
3a2

8
− b

2

)
x2 +

(
3ab
4

− 5a3

16

)
x3

+
(

35a4

128
+

3b2

8
− 15a2b

16

)
x4 + O(x5) (1.105)

First we’ll expand the eigenvalue to fourth order in y (field):

λ =
√

1 + 4αy + y2 (1.106)

� 1 + 2αy +
(

1
2
− 2α2

)
y2 +

(
4α3 − α

)
y3 +

(
3α2 − 1

8
− 10α4

)
y4 + O(y5) (1.107)

� 1 + 2αy + 2β2y2 − 4β2αy3 +
(

3α2 − 1
8
− 10α4

)
y4 + O(y5) (1.108)

Now let’s consider the denominator of a1,2 = n1,2√
d

:

d = (1 + 2αy ∓ λ)2 + 4β2y2 (1.109)
= 1 + 4α2y2 + λ2 + 4αy ∓ 2λ∓ 4αyλ+ 4β2y2 (1.110)
= 1 + 4α2y2 + 1 + 4αy + y2 + 4αy ∓ 2λ∓ 4αyλ+ 4β2y2 (1.111)
= 2 + 8αy + 2y2 ∓ 2λ∓ 4αyλ (1.112)
= 2 + 8αy + 2y2 ∓ 2 (1 + 2αy)λ (1.113)

� 2 + 8αy + 2y2 ∓ 2 (1 + 2αy)
(

1 + 2αy + 2β2y2 − 4β2αy3 +
(

3α2 − 1
8
− 10α4

)
y4

)
(1.114)

� 2 + 8αy + 2y2 ∓ 2
(
2αy + 4α2y2 + 4αβ2y3 − 8β2α2y4

)
∓2

(
1 + 2αy + 2β2y2 − 4β2αy3 +

(
3α2 − 1

8
− 10α4

)
y4

)
(1.115)

� 2 + 8αy + 2y2 ∓ 2
(
1 + 4αy +

(
4α2 + 2β2

)
y2

)∓ 2
(

3α2 − 1
8
− 10α4 − 8β2α2

)
y4 (1.116)

� 2 + 8αy + 2y2 ∓ (
2 + 8αy +

(
2 − 4β2

)
y2

)∓ 2
(

3α2 − 1
8
− 10α4 − 8β2α2

)
y4 (1.117)

d+ � 2 + 8αy + 2y2 − 2 − 8αy − (
2 − 4β2

)
y2 − 2

(
3α2 − 1

8
− 10α4 − 8β2α2

)
y4 (1.118)

� 4β2y2 − 2
(

3α2 − 1
8
− 10α4 − 8β2α2

)
y4 (1.119)
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� 4β2y2 − 2
(

3α2 − 1
8
− 10

(
1
16

− β4 − 2α2β2

)
− 8β2α2

)
y4 (1.120)

� 4β2y2 − 2
(

3α2 − 3
4

+ 10β4 + 12α2β2

)
y4 (1.121)

� 4β2y2 − (−6β2 + 20β4 + 24α2β2
)
y4 (1.122)

� 4β2y2

(
1 +

6
4
y2 − 5β2y2 − 6α2y2

)
(1.123)

� 4β2y2
(
1 + 6α2y2 + 6β2y2 − 5β2y2 − 6α2y2

)
(1.124)

� 4β2y2
(
1 + β2y2

)
(1.125)

d− � 2 + 8αy + 2y2 + 2 + 8αy +
(
2 − 4β2

)
y2 + 2

(
3α2 − 1

8
− 10α4 − 8β2α2

)
y4 (1.126)

� 4 + 16αy + 4
(
1 − β2

)
y2 (1.127)

Note that a fourth order expansion of λ was needed for d+, but not for d−. Now let’s expand the inverse
square root 1√

d
:

d
− 1

2
+ �

(√
4β2y2 (1 + β2y2)

)−1

� 1
2βy

(
1 − β2

2
y2

)
(1.128)

d
− 1

2− � (
4 + 16αy + 4

(
1 − β2

)
y2

)− 1
2 (1.129)

� 1
2
(
1 + 4αy +

(
1 − β2

)
y2

)− 1
2 (1.130)

� 1
2

(
1 −

(
4α
2

)
y +

(
3 · 16α2

8
− 1 − β2

2

)
y2

)
(1.131)

� 1
2

(
1 − 2αy +

(
6α2 − 1

2
+
β2

2

)
y2

)
(1.132)

� 1
2

(
1 − 2αy +

(
6
4
− 6β2 − 1

2
+
β2

2

)
y2

)
(1.133)

� 1
2

(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.134)

Note that all of the square roots take the positive root. Now let’s consider the numerators:

n±
1 = 2βy (1.135)
n±

2 = 1 + 2αy ∓ λ (1.136)
� 1 + 2αy ∓ (

1 + 2αy + 2β2y2 − 4β2αy3
)

(1.137)

n+
2 � 1 + 2αy − 1 − 2αy − 2β2y2 + 4β2αy3 (1.138)

� −2β2y2 + 4β2αy3 (1.139)
n−

2 � 1 + 2αy + 1 + 2αy + 2β2y2 (1.140)
� 2 + 4αy + 2β2y2 (1.141)

Finally let’s calulate the the mixing coeffecients:

a+
1 =

n+
1√
d+

=
2βy√

(1 + 2αy − λ)2 + 4β2y2

(1.142)

= (2βy)
1

2βy

(
1 − β2

2
y2

)
(1.143)

� 1 − β2

2
y2 (1.144)
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a+
2 =

n+
2√
d+

=
1 + 2αy − λ√

(1 + 2αy − λ)2 + 4β2y2

(1.145)

=
(−2β2y2 + 4β2αy3

) 1
2βy

(
1 − β2

2
y2

)
(1.146)

� − (
βy − 2αβy2

)(
1 − β2

2
y2

)
(1.147)

� −βy + 2αβy2 (1.148)

a−1 =
n−

1√
d−

=
2βy√

(1 + 2αy + λ)2 + 4β2y2

(1.149)

� (2βy)
1
2

(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.150)

� βy − 2αβy2 (1.151)

a−2 =
n−

2√
d−

=
1 + 2αy + λ√

(1 + 2αy + λ)2 + 4β2y2

(1.152)

� (
2 + 4αy + 2β2y2

) 1
2

(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.153)

� (
1 + 2αy + β2y2

)(
1 − 2αy +

(
1 − 11

2
β2

)
y2

)
(1.154)

� 1 − 2αy +
(

1 − 11
2
β2

)
y2 + 2αy − 4α2y2 + β2y2 (1.155)

� 1 +
(

1 − 11
2
β2 − 4α2 + β2

)
y2 (1.156)

� 1 +
(

1 − 11
2
β2 + 4β2 − 1 + β2

)
y2 (1.157)

� 1 − β2

2
y2 (1.158)

As expected a±1 = ±a∓2 . For notational convenience, we’ll drop the ± on the mixing coefficients. This gives,
for the

{∣∣m±
J

〉}
states to second order in y (field):

a1 =
2βy√

(1 + 2αy − λ)2 + 4β2y2

=
1 + 2αy + λ√

(1 + 2αy + λ)2 + 4β2y2

� 1 − β2

2
y2 (1.159)

a2 =
1 + 2αy − λ√

(1 + 2αy − λ)2 + 4β2y2

=
−2βy√

(1 + 2αy + λ)2 + 4β2y2

� −βy + 2αβy2 (1.160)

β2

2
=

1
8

(
1 − 4m2

J

[L]2

)
(1.161)

2αβ =
mJ

[L]

√
1 − 4m2

J

[L]2
(1.162)

|L+,mJ〉 = a1

∣∣∣∣L± 1
2
,mJ

〉
+ a2

∣∣∣∣L∓ 1
2
,mJ

〉
(1.163)

|L−,mJ〉 = a1

∣∣∣∣L∓ 1
2
,mJ

〉
− a2

∣∣∣∣L± 1
2
,mJ

〉
(1.164)

where ± refers to the value of J = L ± 1
2 for the zero field eigenstate that

∣∣m±
J

〉
approaches as the field

approaches zero.
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In the lowest three RS terms for alkali metals, only the mJ = ± 1
2 of the P 1

2
and P 3

2
terms mix:

a1 � 1 − y2

9
(1.165)

a±2 � −
√

2
3
y
(
1 ∓ y

3

)
(1.166)∣∣∣∣P+,+

1
2

〉
= a1

∣∣∣∣P 3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P 1
2
,+

1
2

〉
(1.167)∣∣∣∣P−,+

1
2

〉
= a1

∣∣∣∣P 1
2
,+

1
2

〉
− a+

2

∣∣∣∣P 3
2
,+

1
2

〉
(1.168)∣∣∣∣P+,−1

2

〉
= a1

∣∣∣∣P 3
2
,−1

2

〉
+ a−2

∣∣∣∣P 1
2
,−1

2

〉
(1.169)∣∣∣∣P−,−1

2

〉
= a1

∣∣∣∣P 1
2
,−1

2

〉
− a−2

∣∣∣∣P 3
2
,−1

2

〉
(1.170)

where ± now refers to mJ = ± 1
2 .

1.2.5 Transition Frequencies: Optical Spectrum

Transitions that occur between RS terms are electric dipole transitions. As will be discussed in more detail
in the next section, these transitions have to conserve angular momentum and must result in a change of
parity. All the possible transitions will be listed in groups labelled by the polarization of the incident light.
D1 transitions refer to ones between the S 1

2
states and the P 1

2
states; whereas, D2 transitions refer to ones

between the S 1
2

states and the P 3
2

states. Most of the energy difference between these states is due to
electrostatic interactions. It will be convenient to express these frequencies with respect to the zero field D1
and D2 transition frequencies:

ω0
1
2

=
EP

0 − ES
0

h̄
−

(
2
3

)
ωso = 2πν0

1
2

(1.171)

ω0
3
2

=
EP

0 − ES
0

h̄
+

(
1
3

)
ωso = 2πν0

3
2

(1.172)

ωso = ω0
3
2
− ω0

1
2

=
(

1
3
−−2

3

)
ωso = 2πνso (1.173)

ω 1
2

= ω0
1
2

+ δω 1
2

(1.174)

ω 3
2

= ω0
3
2

+ δω 3
2

(1.175)

δω = δω 3
2
− δω 1

2
(1.176)

where the δω terms are “added by hand” to account for the shift in the lines due to the presence of a buffer
gas such as 3He & N2. Note that in the following, bracketed [· · ·] terms evaluate to 1 when the approximation
gS = −2 is made.

For light linearly polarized parallel to the B-field (which has 0 units of angular momentum), the transition
frequencies are:∣∣∣∣S 1

2
,−1

2

〉
↔ a1

∣∣∣∣P 1
2
,−1

2

〉
− a−2

∣∣∣∣P 3
2
,−1

2

〉
=⇒ ω = ω 1

2
+

2y
3

(
1 − y

3

)
ωso (1.177)∣∣∣∣S 1

2
,−1

2

〉
↔ a1

∣∣∣∣P 3
2
,−1

2

〉
+ a−2

∣∣∣∣P 1
2
,−1

2

〉
=⇒ ω = ω 3

2
+
y

3

(
1 +

2y
3

)
ωso (1.178)∣∣∣∣S 1

2
,+

1
2

〉
↔ a1

∣∣∣∣P 1
2
,+

1
2

〉
− a+

2

∣∣∣∣P 3
2
,+

1
2

〉
=⇒ ω = ω 1

2
− 2y

3

(
1 +

y

3

)
ωso (1.179)∣∣∣∣S 1

2
,+

1
2

〉
↔ a1

∣∣∣∣P 3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P 1
2
,+

1
2

〉
=⇒ ω = ω 3

2
− y

3

(
1 − 2y

3

)
ωso (1.180)
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For light right circularly polarized perpendicular to the B-field (which has +1 unit of angular momentum),
the transition frequencies are:∣∣∣∣S 1

2
,−1

2

〉
↔ a1

∣∣∣∣P 1
2
,+

1
2

〉
− a+

2

∣∣∣∣P 3
2
,+

1
2

〉
=⇒ ω = ω 1

2
+

4y
3

([ 1
2 − gS

4

−1 − gS

]
− y

6

)
ωso (1.181)

∣∣∣∣S 1
2
,−1

2

〉
↔ a1

∣∣∣∣P 3
2
,+

1
2

〉
+ a+

2

∣∣∣∣P 1
2
,+

1
2

〉
=⇒ ω = ω 3

2
+

5y
3

([
1
5 − 2gS

5

−1 − gS

]
+

2y
15

)
ωso (1.182)

∣∣∣∣S 1
2
,+

1
2

〉
↔

∣∣∣∣P 3
2
,+

3
2

〉
=⇒ ω = ω 3

2
+

yωso

[−1 − gS ]
(1.183)

For light left circularly polarized perpendicular to the B-field (which has −1 unit of angular momentum),
the possible transitions are:∣∣∣∣S 1

2
,+

1
2

〉
↔ a1

∣∣∣∣P 1
2
,−1

2

〉
− a−2

∣∣∣∣P 3
2
,−1

2

〉
=⇒ ω = ω 1

2
− 4y

3

([ 1
2 − gS

4

−1 − gS

]
+
y

6

)
ωso (1.184)

∣∣∣∣S 1
2
,+

1
2

〉
↔ a1

∣∣∣∣P 3
2
,−1

2

〉
+ a−2

∣∣∣∣P 1
2
,−1

2

〉
=⇒ ω = ω 3

2
− 5y

3

([
1
5 − 2gS

5

−1 − gS

]
− 2y

15

)
ωso (1.185)

∣∣∣∣S 1
2
,−1

2

〉
↔

∣∣∣∣P 3
2
,−3

2

〉
=⇒ ω = ω 3

2
− yωso

[−1 − gS]
(1.186)

1.3 Hyperfine Structure (Including Nuclear Spin)

1.3.1 Zero Field Eigenbasis

Adding nuclear spin �I to the system introduces the hyperfine interaction:

Hhfs = Ahfs
�I · �J (1.187)

Ahfs hides all the factors that don’t depend on the spins. IJ-coupling causes states with different mJ to
mix. Since mF (= mI +mJ) is conserved, the {|F,mF 〉} states form a natural eigenbasis. This is more
easily seen with a little arithmetic:

�F 2 = (�I + �J)2 = �I 2 + 2�I · �J + �J 2 (1.188)

Hhfs =
Ahfs

2
(�F 2 − �I 2 − �J 2) (1.189)

The hyperfine interaction splits the 2S 1
2
, 2P 1

2
, and 2P 3

2
terms into 2, 2, and 4 manifolds which are labeled

by F . This is called the hyperfine structure. Note that many calculations to follow will be identical to those
done for the fine structure mixing. Table (1.1) depicts the analogy.

1.3.2 Hamiltonian

The Hamiltonian describing the atom in a magnetic field �B is

H = H0 + Hhfs − �μI · �B − �μJ · �B (1.190)

To recap:

• The first term H0 contains all the terms that do not involve the nuclear spin.

• The second term is the hyperfine interaction.

• The third and fourth terms are the Zeeman terms for the nuclear spin and the total electronic angular
momentum respectively.
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Spin-Orbit Hyperfine
�L �I
�S �J
�J �F

mixes states with different J mixes states with different F
mixes states with same mJ mixes states with same mF

Aso Ahfs

νso ≈ 107 MHz νhfs ≈ 103 MHz
y x

y ≈ 1 → B ≈ 107 gauss x ≈ 1 → B ≈ 103 gauss

Table 1.1: Analogy between spin-orbit and hyperfine coupling.

Using �B = Bẑ & Fz = Iz + Jz and some rearrangement results in,

H = H0 +
(
−Ahfs

2

(
�I 2 + �J 2

)
− gIμNBFz

)
+

(
Ahfs

2
�F 2 + (gIμN − gJμB)BJz

)
(1.191)

The hamiltonian is separated into three terms intentionally. States within a n2S+1LJ term with the same
mF but on different manifolds F are mixed by the Zeeman interaction. This means that the first two terms
are diagonal simultaneously in the {|F,mF 〉} basis and the eigenbasis of H. Therefore, the last term has to
be diagonalized. (make some comment about how fine structure mixing effects this stuff)

1.3.3 Energies: Derivation of the Breit-Rabi Equation

Diagonalization

The Breit-Rabi equation, first derived in 1931 (Breit, G. and I.I. Rabi, Phys. Rev. 38, 2082-2083 (1931)),
gives the energies of the ground state hyperfine levels of atoms and ions with a single valence electron in
the presence of a magnetic field. Let’s specialize to this case L = 0, S = 1

2 , J = 1
2 . F can be I ± 1

2 .
Therefore in the {|F,mF 〉} basis, the Jz term is block diagonal with subblocks no greater than 2 by 2 in
size. The 2 by 2 subblocks are made of the states with different F and same mF . For the special case of
mF = ±Fmax = ± (

I + 1
2

)
, there are no other states to mix with. Thus, they reside in subblocks of size 1

by 1. To diagonalize H, we only have to diagonalize each subblock of H′,

H′ =
Ahfs

2
�F 2 + (gIμN − gSμB)BJz (1.192)

Ĥ′ =
Ahfs

2

[ (
I + 1

2

) (
I + 3

2

)
0

0
(
I − 1

2

) (
I + 1

2

) ]
+ (gIμN − gSμS)B

[
α+ β−
β+ α−

]
(1.193)

α± =
〈
I ± 1

2
,mF

∣∣∣∣ Ĵz

∣∣∣∣I ± 1
2
,mF

〉
(1.194)

β± =
〈
I ∓ 1

2
,mF

∣∣∣∣ Ĵz

∣∣∣∣I ± 1
2
,mF

〉
(1.195)

The first term can be simplified to give:

Ahfs

2
�̂F 2 =

Ahfs

2

(
I +

1
2

)(
I +

1
2

+
[

1 0
0 −1

])
(1.196)

α± & β± in the second term are most easily calculated in the {|I,mI〉 |J,mJ〉} basis:

|I,mI〉 |J,mJ〉 = |mI ,mJ〉 (1.197)

|F,mF 〉 =
∑

|mI ,mJ 〉 〈mI ,mJ |F,mF 〉︸ ︷︷ ︸
Clebsch−Gordon

(1.198)
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Using the formulas for Clebsch-Gordon coefficients (1.31):〈
mF ∓ 1

2
,±1

2
|I +

1
2
,mF

〉
=

1√
[I]

√
I +

1
2
±mF

(1.199)〈
mF ∓ 1

2
,±1

2
|I − 1

2
,mF

〉
=

∓1√
[I]

√
I +

1
2
∓mF

which gives:

α± = ± (α) = ±
(
mF

[I]

)
(1.200)

β± = − (β) = −
⎛
⎝

√(
I + 1

2

)2 −m2
F

[I]

⎞
⎠ (1.201)

To solve for the energies, we only need to diagonalize the last term in H′:

H′ =
Ahfs

2

(
I +

1
2

)2

+
Ahfs

2

(
I +

1
2

)[
1 + 2αx −2βx
−2βx − (1 + 2αx)

]
(1.202)

x = (gIμN − gSμB)
2B
A[I]

(1.203)

This is easily done and, just like fine structure mixing, gives the eigenvalues:

±
(
λ =

√
1 + 4αx+ x2

)
(1.204)

The total energy is therefore:

E = E0 − Ahfs

2

(
I(I + 1) +

1
2

(
1
2

+ 1
))

− gIμNmFB + E′ (1.205)

E′ =
Ahfs

2

(
I +

1
2

)2

± Ahfs

2

(
I +

1
2

)
λ (1.206)

In this case, E0 is the energy of the (possibly mixed) spin-orbit coupled states. The ±λ eigenvalue is used
for states evolving from the F = I± 1

2 manifold. In the zero field case, B = 0, we find the hyperfine splitting
between the two manifolds is:

ΔE =
Ahfs[I]

2
= hνhfs (1.207)

Dropping E0 and relating Ahfs to the zero field hyperfine splitting hνhfs, we get the celebrated Breit-Rabi
equation:

E = −hνhfs

2[I]
− gIμNBmF ± hνhfs

2

√
1 +

4mF

[I]
x+ x2 (1.208)

x = (gIμN − gSμB)
B

hνhfs
(1.209)

where ± refers to states in the F = I ± 1
2 manifold. Note that x is a unitless quantity that gives a relative

measure of the size of the Zeeman interaction with respect to the hyperfine interaction. For example, the
Zeeman interaction is comparable to the hyperfine interaction (x ≈ 1) for potassium-39 and rubidium-85
when B ≈ 165 gauss & 1080 gauss respectively.
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We’ll discuss two special cases now. The energies of the mF = ±(I + 1
2 ) states (aka “edge” states) in the

F = I + 1
2 manifold (aka “upper” manifold) are:

E±(I+ 1
2 ) =

I

[I]
hνhfs ±

([
gS

−2

]
μB − gIμNI

)
B (1.210)

where ± now refers to mF . A low field (B < 165 gauss & 1080 gauss for potassium-39 and rubidium-85
respectively) expansion of the energies for the the F = I ± 1

2 manifolds can be performed using:

√
1 + 2ax+ x2 = 1 +

1
2
x (2a+ x) − 1

2 · 4x
2 (2a+ x)2 +

1 · 3
2 · 4 · 6x

3 (2a+ x)3 − 1 · 3 · 5
2 · 4 · 6 · 8x

4 (2a+ x)4

+
1 · 3 · 5 · 7

2 · 4 · 6 · 8 · 10
x5 (2a+ x)5 − 1 · 3 · 5 · 7 · 9

2 · 4 · 6 · 8 · 10 · 12
x6 (2a+ x)6 + · · · (1.211)

Expanding each factor of (2a+ x)n and reducing the coefficients in front of each term:

√
1 + 2ax+ x2 = 1 +

1
2
x (2a+ x) − 1

8
x2

(
4a2 + x2 + 4ax

)
+

1
16
x3

(
8a3 + 12a2x+ 6ax2 + x3

)
− 5

128
x4

(
16a4 + 32a3x+ 24a2x2 + 8ax3 + x4

)
+

7
256

x5
(
32a5 + 80a4x+ 80a3x2 + 40a2x3 + 10ax4 + x5

)
− 21

1024
x5

(
64a6 + 192a5x+ 240a4x2 + 160a3x3 + 60a2x4 + 12ax5 + x6

) · · ·(1.212)

Keeping only the terms up to sixth order in the dimensionless field parameter x:√
1 + 2ax+ x2 = 1 +

1
2
x (2a+ x) − 1

8
x2

(
4a2 + x2 + 4ax

)
+

1
16
x3

(
8a3 + 12a2x+ 6ax2 + x3

)
− 5

16
x4

(
2a4 + 4a3x+ 3a2x2

)
+

7
16
x5

(
2a5 + 5a4x

)− 21
16
x6a6 + O(x7) (1.213)

Collecting all the terms order by order:

√
1 + 2ax+ x2 = 1 + (a)x+

(
1
2
− a2

2

)
x2 +

(
−a

2
+
a3

2

)
x3 +

(
−1

8
+

3a2

4
− 5a4

8

)
x4

+
(

3a
8

− 5a3

4
+

7a5

8

)
x5 +

(
1
16

− 15a2

16
− 21a6

16
+

35a4

16

)
x6 + O(x7) (1.214)

Pulling out common factors:√
1 + 2ax+ x2 = 1 + ax+

1
2
(
1 − a2

)
x2 − a

2
(
1 − a2

)
x3 − 1

8
(
1 − 6a2 + 5a4

)
x4

+
3a
8

(
1 − 10a2

3
+

7a4

3

)
x5 +

1
16

(
1 − 15a2 − 21a6 + 35a4

)
x6A+ O(x7) (1.215)

Note that when a = ±1, the stuff under the square root is a perfect square:

√
1 + 2ax+ x2 =

√
1 ± 2x+ x2 =

√
(1 ± x)2 = 1 ± x (1.216)

In this case (a = ±1), all terms second order or higher in x have to disappear order by order. Using this
insight, a (1 − a2) factor is pulled out of each higher order term:

√
1 + 2ax+ x2 = 1 + ax+

1
2
(
1 − a2

)
x2 − a

2
(
1 − a2

)
x3 +

1
8
(
5a2 − 1

) (
1 − a2

)
x4

+
3a
8

(
1 − 7a2

3

)(
1 − a2

)
x5 − 1

16
(
14a2 − 21a2 − 1

) (
1 − a2

)
x6 + O(x7)(1.217)
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Making the substitution a = 2mF/[I], dividing both sides of the Breit-Rabi equation (1.208) by hνhfs, and
using the sixth order expansion that was just calculated gives:

± E±
hνhfs

= a0 + a1x+

[
1 −

(
2mF

[I]

)2
][

6∑
n=2

anx
n

]
(1.218)

x = (gIμN − gSμB)
B

hνhfs
(1.219)

[I] = 2I + 1 (1.220)

a0 =
(
I + 1

2 ∓ 1
2

[I]

)
(1.221)

a1 =
mF

[I]

(
1 ± gIμN

gSμB
([I] ∓ 1)

1 − gIμN

gSμB

)
≈ mF

[I]
+ O(10−3) (1.222)

a2 =
1
4

(1.223)

a3 = −mF

2[I]
(1.224)

a4 =
1
16

[
5
(

2mF

[I]

)2

− 1

]
(1.225)

a5 =
3mF

8[I]

[
1 − 7

3

(
2mF

[I]

)2
]

(1.226)

a6 = − 1
32

[
14

(
2mF

[I]

)2

− 21
(

2mF

[I]

)4

− 1

]
(1.227)

where ± refers to the F = I ± 1
2 manifold. Note that eqn. (1.210) shows that the energy for the edge

states in the upper manifold
(
F = I + 1

2 & |mF | = I + 1
2

)
is linear in field. Therefore, for the edge states,

(2mF /[I])
2 = 1 and all terms of order two or higher in field in eqn. (1.218) must disappear order by order.

Consequently eqn. (1.218) is written such that the disappearance of higher order terms is evident.

1.3.4 Eigenstates: Hyperfine Mixing

At low field, it is useful to label states by F and mF because F is almost a good quantum number. Therefore,
at low field, we’ll refer to two groups of states as “manifolds” which are labeled by F . Within each manifold,
states are distinguished by their mF . At high field, the nuclear spin and total electronic angular momentum
decouple. This is because the Zeeman interaction becomes much larger than the hyperfine interaction.
Because the electron magnetic moment is much larger than the nuclear magnetic moment, it is useful to
groups states by their mJ , which at high field is almost a good quantum number. These groupings are
called Zeeman multiplets. Each state within a multiplet is distinguished by it’s mI , which at high field is
also almost a good quantum number. Note that regardless of the magnitude of the field, mF is always a
good quantum number. For most of this document, we’ll be working in the low field limit where the most
appropriate quantum numbers are F and mF . Figure (1.1) depicts a qualitative energy level diagram for
the most abundant isotope of Rubidium.

(The following is analogous to fine structure mixing with y → x) Since we are considering the ground
state term of an alkali metal atom, there is no fine structure mixing. However the field B does result in
hyperfine structure mixing (states with the same mF but different F ):

∣∣m±
F

〉
= a±1

∣∣∣∣I +
1
2
,mF

〉
+ a±2

∣∣∣∣I − 1
2
,mF

〉
(1.228)

|F,mF 〉 =
+ 1

2∑
mJ=− 1

2

|mF −mJ ,mJ〉 〈mF −mJ ,mJ | F,mF 〉 (1.229)
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Figure 1.1: Qualitative Energy Level Diagram for Rubidium-85 (I = 5/2) in a Weak Field
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b±1 (mF ) =
〈
mF − 1

2
,+

1
2
|I ± 1

2
,mF

〉
(1.230)

b±2 (mF ) =
〈
mF +

1
2
,−1

2
|I ± 1

2
,mF

〉
(1.231)∣∣∣∣I ± 1

2
,mF

〉
= b±1

∣∣∣∣mF − 1
2
,+

1
2

〉
+ b±2

∣∣∣∣mF +
1
2
,−1

2

〉
(1.232)

The values for a±1,2 come from the diagonalization of eqn. (1.202) where λ± are the eigenvalues given by
eqn. (1.204, α and β are defined by eqns. (1.200) and (1.201), and b±1,2 are from eqns. (C.9) and (C.10):

a±1 =
2βx√

(1 + 2αx∓ λ)2 + 4β2x2

(1.233)

a±2 =
1 + 2αx∓ λ√

(1 + 2αx∓ λ)2 + 4β2x2

(1.234)

a±1 = ±a∓2 (1.235)

b±1 = ±
√
I ±mF + 1

2

[I]
(1.236)

b±2 = +

√
I ∓mF + 1

2

[I]
(1.237)

The ± sign is taken for transitions within the F = I ± 1
2 manifold. For simplicity (due to orthogonality):

a1 ≡ a+
1 = a−2 (1.238)

a2 ≡ a+
2 = −a−1 (1.239)

b1 ≡ b+1 = b−2 (1.240)
b2 ≡ b+2 = −b−1 (1.241)∣∣∣∣I ± 1

2
,mF

〉
= b1

∣∣∣∣mF ∓ 1
2
,±1

2

〉
± b2

∣∣∣∣mF ± 1
2
,∓1

2

〉
(1.242)

∣∣m±
F

〉
= a1

∣∣∣∣I ± 1
2
,mF

〉
± a2

∣∣∣∣I ∓ 1
2
,mF

〉
(1.243)

Eqn. (1.243) represents the decomposition of the eigenstates
{∣∣m±

F

〉}
in the zero field hyperfine coupled

basis {|F,mF 〉}, whereas eqn. (1.244) represents the decomposition in the zero field uncoupled IJ basis
{|mI ,mJ〉}: ∣∣m±

F

〉
= a1

∣∣∣∣I ± 1
2
,mF

〉
± a2

∣∣∣∣I ∓ 1
2
,mF

〉

= a1

(
b1

∣∣∣∣mF ∓ 1
2
,±1

2

〉
± b2

∣∣∣∣mF ± 1
2
,∓1

2

〉)

±a2

(
b1

∣∣∣∣mF ± 1
2
,∓1

2

〉
∓ b2

∣∣∣∣mF ∓ 1
2
,±1

2

〉)

= (a1b1 − a2b2)
∣∣∣∣mF ∓ 1

2
,±1

2

〉
± (a1b2 + a2b1)

∣∣∣∣mF ± 1
2
,∓1

2

〉
(1.244)

1.3.5 Transition Frequencies: EPR Spectrum

Introduction

EPR stands for E lectron Paramagnetic Resonance. At low field, it refers to the transitions between adjacent
states within a particular manifold. Transitions between mF ↔ mF − 1 will be labeled by the higher state
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Isotope F = I − 1
2 transition F = I + 1

2 transition mF

39K 2 +2 ↔ +1 +2
1 +1 ↔ 0 2 +1 ↔ 0 +1
1 0 ↔ −1 2 0 ↔ −1 0

2 −1 ↔ −2 −1

85Rb 3 +3 ↔ +2 +3
2 +2 ↔ +1 3 +2 ↔ +1 +2
2 +1 ↔ 0 3 +1 ↔ 0 +1
2 0 ↔ −1 3 0 ↔ −1 0
2 −1 ↔ −2 3 −1 ↔ −2 −1

3 −2 ↔ −3 −2

Table 1.2: Transitions are labelled by the higher mF state.

mF . For example, refer to table (1.2) for the applicable transitions within the ground state for potassium-39
and rubidium-85. Recall that:

gS = −2
[
1 + O(10−3)

]
(1.245)

x = (gIμN − gSμB)
B

hνhfs
(1.246)

The frequency corresponding to these transitions within the F = I ± 1
2 manifold are:

ν± =
νhfs

2

(√
1 +

4mF

[I]
x+ x2 −

√
1 +

4 (mF − 1)
[I]

x+ x2

)
∓ gIμNB

h
(1.247)

where the overall sign was chosen to give a positive frequency.

End Transition Frequencies

Transitions involving the edge states are called “end” transitions. The frequency of an end transition has a
simpler form:

mF = ±
(
I +

1
2

)
→ 4mF = ±2[I] →

√
1 +

4mF

[I]
x+ x2 = 1 ± x (1.248)

ν± = ±νhfs

2

[
1 ± x−

√
1 ± 2

(
2I − 1

[I]

)
x+ x2

]
− gIμNB

h
(1.249)

= ±νhfs

2

[
1 −

√
1 ± 2

(
2I − 1

[I]

)
x+ x2

]
+
νhfs

2
(gIμN − gSμB)

B

hνhfs
− gIμNB

h
(1.250)

=
([

gS

−2

]
μB − 1

2
gIμN

)
B

h
± νhfs

2

[
1 −

√
1 ± 2

(
2I − 1

[I]

)
x+ x2

]
(1.251)

where ± refers to edge state mF = ± (
I + 1

2

)
involved in the end transition.

End Transition Frequency Inversion Formula

Because the equation for the frequency of an end transition involves only one square root term, the equation
can be inverted to give the field as a function of frequency. Expressing eqn. (1.251) in terms of x and isolating
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the square root term:

ν± =
(−gSμB − gIμN )
(−gSμB + gIμN )

(νhfs

2

)
x± νhfs

2

[
1 −

√
1 ± 2

(
2I − 1

[I]

)
x+ x2

]
(1.252)

=
νhfs

2

([−gSμB − gIμN

−gSμB + gIμN

]
x± 1 ∓

√
1 ± 2

(
2I − 1

[I]

)
x+ x2

)
(1.253)

=
νhfs

2

⎛
⎜⎜⎜⎝
[−gSμB − gIμN

−gSμB + gIμN

]
︸ ︷︷ ︸

a

x± 1 ∓
√√√√√1 ± 2

[
2I − 1

[I]

]
︸ ︷︷ ︸

b

x+ x2

⎞
⎟⎟⎟⎠ (1.254)

ν =
νhfs

2

(
ax+ s− s

√
1 + 2sbx+ x2

)
(1.255)

s = ±1 → s2 = 1 (1.256)

n = 2
ν

νhfs
= ax+ s− s

√
1 + 2sbx+ x2 (1.257)

n− ax− s = s
√

1 + 2sbx+ x2 (1.258)

Now both sides of the equation can be squared, leaving an equation that is second order in x:

(n− ax− s)2 =
(
−s

√
1 + 2sbx+ x2

)2

(1.259)

n2 + a2x2 + 1 − 2nax− 2sn+ 2sax = 1 + 2sbx+ x2 (1.260)
0 = 1 + 2sbx+ x2 − n2 − a2x2 − 1 + 2nax+ 2sn− 2sax(1.261)
0 =

(
1 − a2

)
x2 + 2 (sb− sa+ na)x+ 2sn− n2 (1.262)

0 = x2 + 2
(
sb− sa+ na

1 − a2

)
x+

2sn− n2

1 − a2
(1.263)

This is solved by using the quadratic formula (Press, William H. Brian P. Flannery, Saul A. Teukolsky, and
William T. Vetterling. Numerical Recipes in C: The Art of Scientific Computing, 1st Edition. Cambridge:
Cambridge University Press, 1988. pg 156-7, section 5.5):

Ax2 + Bx+ C = 0 (1.264)

q ≡ −1
2

[
B + sgn(B)

√
B2 − 4AC

]
(1.265)

x1 =
q

A & x2 =
C
q

(1.266)

In principle, the “traditional” quadratic formula is formally equivalent to the solutions (1.266). However, in
practice, solutions to the quadratic formula are typically computed on devices that are susceptible to round
off errors caused the subtraction of two very nearly identical numbers. The solutions of the form given above
are robust against round off errors. The sign of B depends on s and the frequency of the transition, ν. The
correct solution x1,2 depends on the field. Since the two solutions differ by orders of magnitude, the correct
solution is manifest. We’ll consider only the low field solutions (x� 1 and ν � νhfs), which corresponds to
the second solution, x2. Making the following substitutions and noting the following relations:

a =
a1

a2
=
ax − ay

ax + ay
=

−gSμB − gIμN

−gSμB + gIμN
(1.267)

1 − a2 = 1 − a1
1

a2
2

=
a2
2 − a2

1

a2
2

=
(ax + ay)2 − (ax − ay)2

a2
2

=
4axay

a2
2

(1.268)

b− 1 =
2I − 1

[I]
− 1 =

2I − 1 − 2I − 1
[I]

= − 2
[I]

(1.269)

b+ 1 =
2I − 1

[I]
+ 1 =

2I − 1 + 2I + 1
[I]

= +
4I
[I]

(1.270)
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gives for the A,B, C coefficients:

A = 1 (1.271)

B = 2
(
sb− sa+ na

1 − a2

)
= 2a2

(
sba2 − sa1 + na1

4axay

)
(1.272)

= 2 (ax + ay)
(
sbax + sbay − sax + say + nax − nay

4axay

)
(1.273)

=
(
ax + ay

2saxay

)
[ax (b− 1 + sn) + ay (b+ 1 − sn)] (1.274)

C =
2sn− n2

1 − a2
= n

(ax + ay)2

4axay
(2s− n) = n(2 − sn)

(ax + ay)2

4saxay
(1.275)

The discriminant is:

B2 − 4AC =
(
ax + ay

2saxay

)2

[ax (b− 1 + sn) + ay (b+ 1 − sn)]2 − 4n(2 − sn)
(ax + ay)2

4saxay
(1.276)

= (ax + ay)2
(

[ax (b− 1 + sn) + ay (b+ 1 − sn)]2

4a2
xa

2
y

− n(2 − sn)
saxay

)
(1.277)

= (ax + ay)2
(

[ax (b− 1 + sn) + ay (b+ 1 − sn)]2 − 4saxayn(2 − sn)
4a2

xa
2
y

)

=
(
ax + ay

2axay

)2

[a2
x (b− 1 + sn)2 + a2

y (b+ 1 − sn)2 (1.278)

+2axay (b− 1 + sn) (b+ 1 − sn) − 4saxayn(2 − sn)]

=
(
ax + ay

2axay

)2

×
[
a2

x (b− 1 + sn)2 + a2
y (b+ 1 − sn)2 + 2axay

(
b2 − 1 − 2sn+ n2

)]
(1.279)

To determine the sign of B, we need to consider the sign of s [ax (b− 1 + sn) + ay (b+ 1 − sn)] because
ax � ay > 0. For s = −1:

−ax(b − 1 − n) − ay(b+ 1 + n) > 0

n >
ax(b− 1) + ay(b + 1)

ax − ay

ν >
νhfs

[I]

(
−1 + g′

1 − g′
2I

)
↔ sgn(B) = +1 (1.280)

g′ =
ay

ax
=

[−2
gS

]
gIμNI

μB
≈ 10−3 (1.281)

Since g′ is very small, ν always satisfies (1.280) and consequently for s = −1, B > 0. For s = +1:

ax(b− 1 + n) + ay(b + 1 − n) > 0

n >
ax(1 − b) − ay(b+ 1)

ax − ay

ν >
νhfs

[I]

(
1 + g′

1 + g′
2I

)
↔ sgn(B) = +1 (1.282)

ν <
νhfs

[I]

(
1 + g′

1 + g′
2I

)
↔ sgn(B) = −1 (1.283)

g′ =
ay

ax
=

[−2
gS

]
gIμNI

μB
≈ 10−3
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For low field, ν satisfies (1.283) and consequently for s = +1, B < 0. Knowledge of the sign of B (= −s)
allows us to calculate q and therefore the solution x2:

q =
(
ax + ay

−4saxay

)
[ax (b− 1 + sn) + ay (b+ 1 − sn)] −

(
ax + ay

−4saxay

)
×√[

a2
x (b− 1 + sn)2 + a2

y (b+ 1 − sn)2 + 2axay (b2 − 1 − 2sn+ n2)
]

(1.284)

x2 =
C
q

=
n(2 − sn)(ax + ay)2

4saxayq
=

n(2 − sn)(ax + ay)
ax(1 − b− sn) + ay(sn− 1 − b) +

√· · · (1.285)

x = (ax + ay)
B

hνhfs
= x2 (1.286)

B(ν) =
hνhfsn(2 − sn)

ax(1 − b− sn) + ay(sn− 1 − b) +
√· · · (1.287)

Relabelling and rearranging things:

B(ν) =
[−2
gS

](
hνhfs

μB

)
ν0 (1 − sν0/[I])

(1 − sν0) − g′
(
1 − s

2I ν0
)

+
√· · · (1.288)

· · · = (1 − sν0)
2 − 2g′

(
1 +

s[I]
2I

ν0 − ν2
0

2I

)
+ g′2

(
1 − s

2I
ν0

)2

(1.289)

ν0 = [I]
ν

νhfs

(
=

n

1 − b

)
(1.290)

g′ =
[−2
gS

]
gIμNI

μB

(
= 2I

ay

ax

)
(1.291)

Equation (1.288) gives the field B given the end transition frequency ν involving one of the edge states
mF = s

(
I + 1

2

)
when the field is low ν0 < 1. Specifically, equation (1.288) is applicable to the alkali metal

transitions listed in table (1.3). The equation is exact. The stipulation that the field be low is not because
of a low field approximation, but because:

1. the choice of two solutions from the quadratic formula

2. the interpretation of the transition. At high field, the nuclear and electron spins decouple, so it is no
longer appropriate to talk about transitions between the hyperfine levels mF ↔ mF − 1.

Twin Transition Frequency Difference

The upper manifold has two more ΔmF = ±1 transitions than the lower manifold. These extra transitions
are the end transitions. All other upper manifold transitions have a “twin” transition in the lower manifold.
The twins transitions sit side by side on the same row in table (1.2). The difference in frequencies between
twin transitions depends only on the magnitude of the field:

Δνtwin = νlower − νupper = +2gI
μN

h
B (1.292)

Note that for any pair of twin transitions, the lower manifold transition has the larger frequency. For
example, the twin frequency differences for 39K and 85Rb at 10 gauss are:

39K : ν (F = 1,mF = ±1 ↔ 0) − ν (F = 2,mF = ±1 ↔ 0) = 3.98 kHz (1.293)
85Rb : ν (F = 2,mF = ±2 ↔ ±1 ↔ 0) − ν (F = 3,mF = ±2 ↔ ±1 ↔ 0) = 8.25 kHz (1.294)
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Isotope I upper F End gI νhfs

Transition MHz

6Li 1 3/2 s3/2 ↔ s1/2 +0.822 056 228.205 26
7Li 3/2 2 s2 ↔ s1 +2.170 960 803.504 09

23Na 3/2 2 s2 ↔ s1 +1.478 347 1 771.626 13

39K 3/2 2 s2 ↔ s1 +0.260 973 461.719 72
40K 4 9/2 s9/2 ↔ s7/2 −0.324 5 -1 142.92
41K 3/2 2 s2 ↔ s1 +0.143 247 254.013 87

85Rb 5/2 3 s3 ↔ s2 +0.541 208 3 035.732 00
87Rb 3/2 2 s2 ↔ s1 +1.834 133 6 834.682 60

133Cs 7/2 4 s4 ↔ s3 +0.736 857 9 192.631 77

Table 1.3: Upper Manifold End Transitions for which Equation (1.288) is valid with s = ±

Low Field Frequency Expansion

To expand the frequency at low field upto sixth order in x:

ν± =
νhfs

2
Δ ∓ gIμNB

h

Δ =
√

1 + 2ax+ x2 −
√

1 + 2a′x+ x2

= (a− a′) x+
(
−a

2 − a′2

2

)
x2

+
(
−a− a′

2
+
a3 − a′3

2

)
x3

+
(

3
a2 − a′2

4
− 5

a4 − a′4

8

)
x4

+
(

3
a− a′

8
− 5

a3 − a′3

4
+ 7

a5 − a′5

8

)
x5

+
(
−15

a2 − a′2

16
− 21

a6 − a′6

16
+ 35

a4 − a′4

16

)
x6 (1.295)

The difference in each term is with b = [I]:

an − a′n =
(

2mF

[I]

)n

−
(

2 (mF − 1)
[I]

)n

=
[
2
b

]n

[mn
F − (mF − 1)n] (1.296)

Factoring out bn from each term:

Δ
2

=
x

b
+ [1 − 2mF ]

x2

b2
+ 2

[
1 − 3mF + 3m2

F − b2

4

]
x3

b3

+
[
5
(
1 − 4mF + 6m2

F − 4m3
F

)− 3b2

2
(1 − 2mF )

]
x4

b4

+
[
14

(
1 − 5mF + 10m2

F − 10m3
F + 5m4

F

)− 5b2
(
1 − 3mF + 3m2

F

)
+

3b4

8

]
x5

b5

+
[
42

(
1 − 6mF + 15m2

F − 20m3
F + 15m4

F − 6m5
F

)] x6

b6
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+
[
−35b2

2
(
1 − 4mF + 6m2

F − 4m3
F

)
+

15b4

8
(1 − 2mF )

]
x6

b6
(1.297)

Putting this altoghether gives (to sixth order in x), the frequency of transition for the F = I ± 1/2 manifold
at a given (low) field B:

ν±
νhfs

=
6∑

n=1

cn
xn

[I]n
(1.298)

x = (gIμN − gSμB)
B

hνhfs
(1.299)

[I] = 2I + 1 (1.300)

c1 =
1 ± gIμN

gSμB
([I] ∓ 1)

1 − gIμN

gSμB

= 1 ±O(10−3) (1.301)

c2 = 1 − 2mF (1.302)

c3 = 2
(

1 − 3mF + 3m2
F − [I]2

4

)
(1.303)

c4 = 5
(
1 − 4mF + 6m2

F − 4m3
F

)− 3[I]2

2
(1 − 2mF ) (1.304)

c5 = 14
(
1 − 5mF + 10m2

F − 10m3
F + 5m4

F

)− 5[I]2
(
1 − 3mF + 3m2

F

)
+

3[I]4

8
(1.305)

c6 = 42
(
1 − 6mF + 15m2

F − 20m3
F + 15m4

F − 6m5
F

)
−35[I]2

2
(
1 − 4mF + 6m2

F − 4m3
F

)
+

15[I]4

8
(1 − 2mF ) (1.306)

where ± refers to the manifold.

Low Field Frequency Inversion Formula

If we drop all terms higher than second order, then we can get an inversion formula for equation (1.298)
for any transition at low field. Thus applying the quadratic formula (1.266) and noting that μN/μB � 1
and gS ≈ −2, we get the field corresponding to a particular transition frequency at low fields#check#how
accurate is this approximation?:

B ≈
(
hν

μB

)
[I]

1 +
√

1 + 4(1 − 2mF )ν/νhfs

(1.307)

Low Field Adjacent Transition Frequency Difference

At low fields to lowest order, the frequency difference between two adjacent transitions depends on B2:∣∣∣∣ν (mF + 1 ↔ mF ) − ν (mF ↔ mF − 1)
νhfs

∣∣∣∣ = 2
x2

[I]2
= 2

[
(gIμN − gSμB)

B

[I]hνhfs

]2

(1.308)

Low Field Frequency Derivative with respect to Field

The derivative of the frequency with respect to the field is:

dν

dB
= ∓gIμN

h
+

(gIμN − gSμB)
2h[I]

⎛
⎝ 2mF + [I]x√

1 + 4mF

[I] x+ x2
− 2mF − 2 + [I]x√

1 + 4(mF −1)
[I] x+ x2

⎞
⎠ (1.309)
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The derivative can be “expanded” in x at low field by taking the derivative of equation (1.298) term by
term. To fifth order in field, the derivative of the frequency with respect to the field is:

dν±
dB

=
(gIμN − gSμB)

h[I]

5∑
n=0

bn
xn

[I]n
(1.310)

x = (gIμN − gSμB)
B

hνhfs
(1.311)

[I] = 2I + 1 (1.312)

b0 =
1 ± gIμN

gSμB
([I] ∓ 1)

1 − gIμN

gSμB

= 1 ±O(10−3) (1.313)

b1 = 2 (1 − 2mF ) (1.314)

b2 = 6
(

1 − 3mF + 3m2
F − [I]2

4

)
(1.315)

b3 = 20
(
1 − 4mF + 6m2

F − 4m3
F

)− 6[I]2 (1 − 2mF ) (1.316)

b4 = 70
(
1 − 5mF + 10m2

F − 10m3
F + 5m4

F

)− 25[I]2
(
1 − 3mF + 3m2

F

)
+

15[I]4

8
(1.317)

b5 = 252
(
1 − 6mF + 15m2

F − 20m3
F + 15m4

F − 6m5
F

)
−105[I]2

(
1 − 4mF + 6m2

F − 4m3
F

)
+

45[I]4

4
(1 − 2mF ) (1.318)

For the end transitions, the coefficients for the expansion of the derivative of the EPR frequency are:

b0 =
1 + gIμN

gSμB
(2I)

1 − gIμN

gSμB

= 1 ±O(10−3) (1.319)

b1 = ∓4I (1.320)
b2 = 6I (2I − 1) (1.321)
b3 = ∓8I

(
4I2 − 6I + 1

)
(1.322)

b4 = 10I (2I − 1)
(
4I2 − 10I + 1

)
(1.323)

b5 = ∓12I
(
16I4 − 80I3 + 80I2 − 20I + 1

)
(1.324)

where ± refers to the edge state mF = ± (
I + 1

2

)
involved in the transition.
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Chapter 2

Atomic Population Distribution

2.1 Density Matrix

To discuss the relative population of each state, it is useful to introduce the density matrix (U. Fano, Rev.
Mod. Phys. 29, pg 74-93, 1957). It is often used to represent a large ensemble of systems in a statistical
mixture of possibly coherent pure quantum states. To be explicit, given a statistical probability pk of being
in the pure quantum state |ψk〉, the density operator in the basis {|un〉} is:

ρ̂ =
∑

k

pk |ψk〉 〈ψk|

=
∑

k

pk

∑
n,m

〈ψk|um〉 〈un|ψk〉 |un〉 〈um| (2.1)

The diagonal elements have a simple and straightforward physical interpretation: they are the combined
statistical and quantum mechanical probabilities of being in a basis state |un〉:

ρnn =
∑

k

pk |〈un|ψk〉|2 (2.2)

which implies that Tr(ρ̂) = 1 as one would expect. Off diagonal elements are called coherences. The ensemble
averaged expectation value of some operator M̂ is given by:〈

M̂
〉

= Tr(ρ̂M̂) (2.3)

For example, consider a vapor of alkali metal in a field at thermal equilibirum. We’ll assume that all the
atoms are in the ground RS term with eigenbasis:

|u+〉 =
∣∣∣∣S 1

2
,+

1
2

〉
(2.4)

|u−〉 =
∣∣∣∣S 1

2
,−1

2

〉
(2.5)

The state of a single atom labelled by l is:

|ψl〉 = cl+e
iφl+ |u+〉 + cl−eiφl− |u−〉 (2.6)

The density matrix for this particular atom is:

ρ̂l = |ψl〉 〈ψl| (2.7)
=

(
cl+e

iφl+ |u+〉 + cl−eiφl− |u−〉
) (
cl+e

−iφl+ 〈u+| + cl−e−iφl− 〈u−|
)

(2.8)

=
[

c2l+ cl+cl−ei(φl+−φl−)

cl+cl−e−i(φl+−φl−) c2l−

]
(2.9)
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Averaging over all atoms in the vapor gives the ensemble averaged density operator:

ρ̂ =
1
N

N∑
l=1

ρ̂l (2.10)

=
∑N

l=1

N

[
c2l+ cl+cl−ei(φl+−φl−)

cl+cl−e−i(φl+−φl−) c2l−

]
(2.11)

If the sample of atoms is incoherent, then the off-diagonal elements average to zero. If there is some coherence
among the atoms, then these off-diagonal elements are non-zero. Coherence refers to the a systematic non-
random phase relationship among quantum states of the atoms in the ensemble. We’ll assume that our
sample does not and therefore is completely incoherent. If there are nk atoms that share the same ck±, then
we can rewrite the density matrix as:∑N

l=1

N
cl+cl−e−i(φl+−φl−) ≈ 0 (2.12)

ρ̂ =
∑

k

nk

[
c2k+ 0
0 c2k−

]
(2.13)

Taking advantage of the normalization condition c2k++c2k− = 1 to relabel things and noting that nk

N is simply
the statistical probability of an atom being in a state with ck:

ρ̂ =
∑

k

pk

[
c2k 0
0 1 − c2k

]
=

[ ∑
k pkc

2
k 0

0
∑

k pk

(
1 − c2k

) ]
(2.14)

The values of the sums of diagonal elements are constrained by statistical mechanics when the system is at
thermal equilibrium. For a canonical ensemble (fixed number of particles in equilibrium with a heat reservoir
at a common temperature T ), the relative population of each state is given by:

Pn =
exp

(−En

kT

)
Z

(2.15)

Z =
∑

n

exp
(
−En

kT

)
(2.16)

where Z is the partition function. The energies for the ground RS terms (which will be labeled by ±) are:

E

(∣∣∣∣S 1
2
,+

1
2

〉)
= ES

0 +
[
gS

−2

]
μBB (2.17)

E

(∣∣∣∣S 1
2
,−1

2

〉)
= ES

0 −
[
gS

−2

]
μBB (2.18)

This gives for the relative population of each state at thermodynamic equilibrium:

Z = exp
(
−E+

kT

)
+ exp

(
−E−
kT

)
(2.19)

= exp

⎛
⎝−

ES
0 +

[
gS

−2

]
μBB

kT

⎞
⎠ + exp

⎛
⎝−

ES
0 −

[
gS

−2

]
μBB

kT

⎞
⎠ (2.20)

= exp
(
−E

S
0

kT

)[
exp

(
−

[
gS

−2

]
μBB

kT

)
+ exp

(
+

[
gS

−2

]
μBB

kT

)]
(2.21)

P± =
exp

(
−ES

0
kT

)
exp

(
∓

[
gS

−2

]
μBB
kT

)
exp

(
−ES

0
kT

) [
exp

(
+

[
gS

−2

]
μBB
kT

)
+ exp

(
−

[
gS

−2

]
μBB
kT

)] (2.22)
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=
exp

(
∓

[
gS

−2

]
μBB
kT

)
exp

(
+

[
gS

−2

]
μBB
kT

)
+ exp

(
−

[
gS

−2

]
μBB
kT

) (2.23)

PmJ =
exp (mJβ)

exp
(
+β

2

)
+ exp

(
−β

2

) (2.24)

We have introduced the β parameter which we’ll call the “spin temperature,” even though it is a unitless
quantity, is inversely proportional to temperature at thermal equilibrium, and is, in this case, negative. It’s
usefulness far outweighs those peccadillos and will be more apparent when we discuss the role of nuclear
spin in spin-exchange collisions in section (2.2). For the S 1

2
ground states at thermal equilibrium, the spin

temperature is:

β =
gSμBB

kT
=

[
gS

−2

](−2μBB

kT

)
(2.25)

Connecting this to the density matrix for the system yields the following relationship between the diagonal
elements and the relative populations given by Boltzmann statistics:

P+ =
exp

(
+β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) =
∑

k

pkc
2
k (2.26)

P− =
exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) =
∑

k

pk

(
1 − c2k

)
(2.27)

ρ̂ =
[
P+ 0
0 P−

]
(2.28)

Knowing the form of the density matrix allows us to calculate the longitudinal (along the axis of the field)
polarization at thermal equilbrium:

P ≡
〈
Ĵz

〉
J

=
Tr

(
ρ̂Ĵz

)
1
2

(2.29)

= 2 Tr
{[

P+ 0
0 P−

] [
+ 1

2 0
0 − 1

2

]}
(2.30)

= 2 Tr
{[

+P+
2 0

0 −P−
2

]}
(2.31)

= 2
(

+
P+

2
− P−

2

)
(2.32)

= P+ − P− (2.33)

As should come as no surprise, the polarization for a two state system is simply the difference between
the relative populations of the two states. We can now express the polarization as a function of the spin
temperature:

P =
exp

(
+β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) −
exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) (2.34)

=
exp

(
+β

2

)
− exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) (2.35)

P = tanh
(
β

2

)
(2.36)
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We’ll see later on that this result is true regardless of the mechanism that producing the polarization.
Inverting to get the spin temperature as a function of polarization:

P =
exp

(
+β

2

)
− exp

(
−β

2

)
exp

(
+β

2

)
+ exp

(
−β

2

) =
x− 1

x

x+ 1
x

=
x2 − 1
x2 + 1

(2.37)

Px2 + P = x2 − 1 (2.38)
(P − 1)x2 = −P − 1 (2.39)

x2 =
[
exp

(
+
β

2

)]2

=
1 + P

1 − P
(2.40)

β = log
(

1 + P

1 − P

)
(2.41)

2.2 Spin Temperature

It has been shown (Young, A.R., Appelt, S., Baranga, A. Ben-Amar, Erickson, C., and Happer, W., App
Phys Lett (70), 3081-3 (1997)) that under the optical pumping, spin exchange, high pressure conditions that
exist within a cell, the diagonal elements of the density operator for both manifolds are:

ρmF =
eβmF

ZF
=
eβmJ

ZJ

eβmI

ZI
(2.42)

ZF =
+F∑

mF =−F

eβmF (2.43)

ZJ =
+J∑

mJ=−J

eβmJ (2.44)

ZI =
+I∑

mI=−I

eβmI (2.45)

mF = mJ +mI (2.46)

The meaning of β, spin temperature, is best described by the original reference by Anderson et al. (L.W.
Anderson, F.M. Pipkin, J.C. Baird, Jr., Phys Rev 116, p 87-98 (1959)):

Direct substitution into these equations shows that in the steady state the solution is given by

a 3
2

: a 1
2

: a− 1
2

: a− 3
2

= α3 : α2 : α : 1
b 1

2
: b− 1

2
= α : 1

This solution suggests the general form of the steady-state solution for all spin-exchange problems.
It is the most probable way in which two sets of particles can be arranged so that the number
of particles in each set is a constant and so that the total z component of angular momentum
is a constant. This implies that the density matrix for a system of Na and N in spin-exchange
equilibrium is given by

ρ =
exp [− (I1z + S1z)β] exp [− (I2z + S2z)β]

Tr {exp [− (I1z + S1z)β] exp [− (I2z + S2z)β]} ,

where β is such that the total z component of the angular momentum of the system is given
by Tr[(I1s + S1z + I2z + S2z)ρ]. The parameter β might be called an angular momentum spin
temperature.
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They were discussing spin-exchange between sodium and nitrogen, but it is perfectably applicable to other
spin-exchange systems including “pure” and “hybrid” cells. This gives the relative population of the∣∣mF − 1

2 ∓ 1
2

〉
state:

ρ∓ =
eβ(mF − 1

2∓ 1
2 )

ZF
(2.47)

from which the relative population difference is easily obtained:

ρ+ − ρ− =
eβmF

ZF
− eβ(mF −1)

ZF
=
eβmF

ZF

(
1 − e−β

)
(2.48)

=
eβmF

ZF

[
1 − exp

(
− log

[
1 + P

1 − P

])]

=
eβmF

ZF

[
1 −

(
1 − P

1 + P

)]

=
eβmF

ZF

(
2P

1 + P

)
(2.49)

where P is the electron spin polarization.

2.3 Polarization
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Chapter 3

A Brief Mathematical Description of
Polarized Light

3.1 Representing Electromagnetic Plane Waves

3.1.1 Real Representation

The electric and magnetic field components of an electromagnetic plane wave traveling in the z-direction
with arbitrary polarization in a uniform and isotropic medium can be written as:

�E (�r, t) = Ex(z, t)x̂+ Ey(z, t)ŷ = E0xx̂ cos (kz − ωt) + E0y ŷ cos (kz − ωt+ φ) (3.1)

�B (�r, t) =
√
με

[
ẑ × �E (�r, t)

]
= μ �H (�r, t) (3.2)

=
√
με [E0xŷ cos (kz − ωt) − E0yx̂ cos (kz − ωt+ φ)] (3.3)

In SI, the energy flux (energy per unit time per unit area or instantaneous power density) associated with
the EM wave is given by the Poynting vector:

�S (�r, t) = �E (�r, t) × �H (�r, t) =
1
μ
�E (�r, t) × �B (�r, t) =

√
ε

μ
�E (�r, t) ×

[
ẑ × �E (�r, t)

]
(3.4)

=
√
ε

μ

(
ẑ
[
�E (�r, t) · �E (�r, t)

]
− �E (�r, t)

[
ẑ · �E (�r, t)

])
(3.5)

= ẑ

√
ε

μ

[
�E (�r, t) · �E (�r, t)

]
(3.6)

= ẑ

√
ε

μ
E2

0x

[
cos2(kz) cos2(ωt) + sin2(kz) sin2(ωt) +

1
2

sin(2kz) sin(2ωt)
]

+ẑ
√
ε

μ
E2

0y

[
cos2(kz + φ) cos2(ωt) + sin2(kz + φ) sin2(ωt) +

1
2

sin(2kz + 2φ) sin(2ωt)
]
(3.7)

We’ll define the intensity as the magnitude of the time averaged energy flux (or time averaged power density):

I ≡ ω

2π

∫ 2π
ω

0

ẑ · �S (�r, t) dt (3.8)

1
2

=
ω

2π

∫ 2π
ω

0

cos2(ωt)dt =
ω

2π

∫ 2π
ω

0

sin2(ωt)dt (3.9)

I =
√
ε

μ

(
E2

0x

2
[
cos2(kz) + sin2(kz)

]
+
E2

0y

2
[
cos2(kz + φ) + sin2(kz + φ)

])
(3.10)

=
1
2

√
ε

μ

[
E2

0x + E2
0y

]
=

√
ε

μ

〈∣∣∣�E∣∣∣2〉
time

(3.11)
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where the time averaged magnitude of the electric field vector is given as:√〈∣∣∣�E∣∣∣2〉
time

=

√
E2

0x + E2
0y

2
(3.12)

3.1.2 Complex Representation: The Jones Calculus

We will use the Jones convention for defining the polarization state of the light (vectors) and the action
of the various optical elements (matrices). This convention uses complex number representation and a
linear polarization basis. The electric field component of a monochromatic electromagnetic plane wave with
propagation vector �k = kẑ at time t is:

�E(z, t) = Ex(z, t)x̂+ Ey(z, t)ŷ = |E〉 eikz−iωt (3.13)
Ex(z, t) = E0x exp (ikz − iωt+ iαx) (3.14)
Ey(z, t) = E0y exp (ikz − iωt+ iαy) (3.15)

|E〉 ≡
[
E0xe

iαx

E0ye
iαy

]
(3.16)

where the relative phase shift is α = αx − αy. Note that it is assumed that the real part of �E is taken when
the physical field is needed. At a fixed point is space and over one period (= 2π

ω ) in time, �E sweeps out an
ellipse in the xy-plane given by (Born, Max and Emil Wolf. Principles of Optics, 7th (Expanded) Edition.
Cambridge: Cambridge University Press, 1999. page 26, equation 15):(

Ex

E0x

)2

+
(
Ey

E0y

)2

− 2
(
Ex

E0x

)(
Ey

E0y

)
cos(α) = sin2(α) (3.17)

In this representation, computing the modulus square of the electric field vector gives:

�E∗ · �E = 〈E|E〉 = E2
0x + E2

0y (3.18)

The time averaged modulus squared of electric field vector is therefore:

∣∣∣�E∣∣∣2
time

≡
�E∗ · �E

2
=
E2

0x + E2
0y

2
(3.19)

and finally the intensity is:

I =
√
ε

μ

〈
�E∗ · �E

〉
time

=
√
ε

μ

〈E | E〉
2

=
〈B | B〉
2μ

√
εμ

(3.20)

3.2 Linear Polarization

For linear polarization, the relative phase shift is an integer multiple of half a wave,

α = ±nπ (3.21)

or in other words the two components are in phase. Eqn. (3.17) becomes degenerate,(
Ex

E0x

)2

+
(
Ey

E0y

)2

∓ 2
(
Ex

E0x

)(
Ey

E0y

)
= 0 (3.22)

with solutions
Ey

E0y
= ∓ Ex

E0x
(3.23)
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Two specific solutions are the orthogonal axes of the xy-plane which correspond to horizontal and vertical
linearly polarized light. Horizontal linearly polarized light is denoted by

|P〉 = |x〉 =
[

1
0

]
(3.24)

Vertical linearly polarized light is denoted by

|S〉 = |y〉 =
[

0
1

]
(3.25)

Linear polarization at an angle θ counterclockwise from the x-axis is

|θ〉 =
[

cos(θ)
sin(θ)

]
(3.26)

3.3 Circular Polarization

When the relative phase shift is a quarter wave,

α = ±(2n+ 1)
π

2
(3.27)

and the magnitudes of the two components are identical,

E0x = E0y (3.28)

then eqn. (3.17) reduces to an equation for a circle:

Ex
2 + Ey

2 = 1 (3.29)

The two orthogonal states are labeled by their helicity, namely the sign of the projection of the spin to the
propagation vector. Right circularly polarized light,

|R〉 = |+〉 =
√

2
2

[
1

+i

]
(3.30)

following the right hand rule such that the spin is parallel to the direction of propagation. Left circularly
polarized light,

|L〉 = |−〉 =
√

2
2

[
1

−i
]

(3.31)

is antiparallel. Note that the standard optics convention is opposite to the helicity convention. In the helicity
convention, for right circularly polarized light, �E rotates counterclockwise in the xy-plane at a fixed point in
space. In the standard optics convention, for right circularly polarized light, �E rotates counterclockwise in
the xy-plane at a fixed moment in time as you move foward in the direction of propagation. See fig. (3.1).
Unless otherwise noted, the helicity convention will be used. See Crawford, Jr. F.S. Waves: Berkeley Physics
Course, Volume 3. McGraw Hill 1968 page 400 for further discussion regarding handedness convention.

3.4 Stokes Parameters

Since the polarization vector of light has two components with complex coefficients, four real numbers are
required to describe it completely. These real numbers are called Stokes parameters. Unfortunately many
different conventions exist in the literature. For our purposes, the most useful convention in the circular
polarization basis for arbitrarily polarized light is:

|E〉 = E0e
iφp

[√
1 + P

2
e−iθ |R〉 +

√
1 − P

2
e+iθ |L〉

]
(3.32)
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Figure 3.1: Right (helicity) circularly polarized light. Left: fixed time, forward in space. Right: fixed space,
forward in time.

where φp is just an overall phase factor that rarely contains any useful information about the light. Equiv-
alently in the linear polarization basis, it is written as:

|E〉 = E0e
iφp

[(√
1 − P

e+iθ

2
+
√

1 + P
e−iθ

2

)
|P〉 +

(√
1 − P

e+iθ

2i
−√

1 + P
e−iθ

2i

)
|S〉

]
(3.33)

The magnitude of �E is:

√
〈E|E〉 =

√
〈ER|ER〉 + 〈EL|EL〉 =

√(
1 + P

2

)
E2

0 +
(

1 − P

2

)
E2

0 = E0 (3.34)

The degree of circular polarization of the light is:

〈ER|ER〉 − 〈EL|EL〉
〈E|E〉 =

(
1+P

2

)
E2

0 − (
1−P

2

)
E2

0

E2
0

= P (3.35)

where P = +(−)1 for pure right (left) circular polarization and P = 0 for pure linear polarization. In the
linear basis for pure linear polarization:

|E〉 = E0e
iφp

[(
e+iθ

2
+
e−iθ

2

)
|P〉 +

(
e+iθ

2i
− e−iθ

2i

)
|S〉

]
= E0e

iφp [cos(θ) |P〉 + sin(θ) |S〉] (3.36)

where θ is the angle of the linear polarization vector with respect to the |P〉-axis. In general for elliptically
polarized light, θ is the angle that the major axis of the polarization ellipse makes with the |P〉-axis.

3.5 Projecting onto an Atomic Coordinate System

The rectangular light coordinate system is defined by:

1axis = |P〉 2axis = |S〉 3axis = |P〉 × |S〉 = |Z〉 (3.37)

where |Z〉 is the light propagation direction. The rectangular atomic coordinate system is defined by:

1axis = x̂ 2axis = ŷ 3axis = ẑ (3.38)
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where the z-axis is traditionally taken to be the quantization axis (direction of the main magnetic “holding”
field). One useful way to decompose the light coordinates in the atomic coordinate representation is:

|P〉 = cos(Φ) cos(Θ)x̂+ sin(Φ) cos(Θ)ŷ − sin(Θ)ẑ (3.39)
|S〉 = − sin(Φ)x̂ + cos(Φ)ŷ (3.40)
|Z〉 = cos(Φ) sin(Θ)x̂+ sin(Φ) sin(Θ)ŷ + cos(Θ)ẑ (3.41)

|R〉 = [cos(Φ) cos(Θ) − i sin(Φ)]
x̂√
2

+ [sin(Φ) cos(Θ) + i cos(Φ)]
ŷ√
2
− sin(Θ)

ẑ√
2

(3.42)

|L〉 = [cos(Φ) cos(Θ) + i sin(Φ)]
x̂√
2

+ [sin(Φ) cos(Θ) − i cos(Φ)]
ŷ√
2
− sin(Θ)

ẑ√
2

(3.43)

where Φ and Θ are azimuthal and polar angles of the |Z〉 vector with respect to the spherical atomic
coordinate system. #check#make a diagram depicting this. The light polarization vector couples to the
atom most naturally in the irreducible spherical vector basis (see appendix B):

x̂ =
ε̂− − ε̂+√

2
ŷ = i

(
ε̂− + ε̂+√

2

)
ẑ = ε̂0 (3.44)

Combining the projection and irreducible basis decomposition gives the following for the light coordinates:

|P〉 = − sin(Θ)ε̂0 − exp(−iΦ) cos(Θ)
ε̂+√

2
+ exp(+iΦ) cos(Θ)

ε̂−√
2

(3.45)

|S〉 = i exp(−iΦ)
ε̂+√

2
+ i exp(+iΦ)

ε̂−√
2

(3.46)

|Z〉 = + cos(Θ)ε̂0 − exp(−iΦ) sin(Θ)
ε̂+√

2
+ exp(+iΦ) sin(Θ)

ε̂−√
2

(3.47)

|R〉 = − sin(Θ)
ε̂0√
2
− exp(−iΦ)

[
1 + cos(Θ)

2

]
ε̂+ − exp(+iΦ)

[
1 − cos(Θ)

2

]
ε̂− (3.48)

|L〉 = − sin(Θ)
ε̂0√
2

+ exp(−iΦ)
[
1 − cos(Θ)

2

]
ε̂+ + exp(+iΦ)

[
1 + cos(Θ)

2

]
ε̂− (3.49)

Only a real vector can be decomposed in the spherical basis in a consistent way. For example, |P〉 , |S〉 , &
|Z〉 are all real vectors and |R〉 & |L〉 are complex vectors; therefore their decompostions using the complex
conjugates of the irreducible basis are:

|P〉 = − sin(Θ)ε̂∗0 −
cos(Θ)√

2
exp (+iΦ) ε̂∗+ +

cos(Θ)√
2

exp (−iΦ) ε̂∗− (3.50)

|S〉 = − i√
2

exp (+iΦ) ε̂∗+ − i√
2

exp (−iΦ) ε̂∗− (3.51)

|Z〉 = + cos(Θ)ε̂∗0 −
sin(Θ)√

2
exp (+iΦ) ε̂∗+ +

sin(Θ)√
2

exp (−iΦ) ε̂∗− (3.52)

|R〉 = −
√

2
2

sin(Θ)ε̂∗0 +
[
1 − cos(Θ)

2

]
exp (+iΦ) ε̂∗+ +

[
1 + cos(Θ)

2

]
exp (−iΦ) ε̂∗− (3.53)

|L〉 = −
√

2
2

sin(Θ)ε̂∗0 −
[
1 + cos(Θ)

2

]
exp (+iΦ) ε̂∗+ −

[
1 − cos(Θ)

2

]
exp (−iΦ) ε̂∗− (3.54)

Note the subtle difference in the two decompositions of |R〉 & |L〉.

3.6 Mirrors

Mirrors are produced by applying one or more layers of a thin film coating onto a substrate. The index
of refraction and thickness of the thin film is chosen to maximize reflection. The reflectivity of the mirror
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Figure 3.2: Top view of BSPC

and the phase shift induced in the light depends on the polarization of the light and its angle of incidence.
The mirrors we commonly use (Newport Corporation, 1791 Deere Ave, Irvine, CA 92606, 1-800-222-6440)
have a minimum relflecticity of 99% for P polarized light and 98% for S polarized light in the 700–950 nm
range for angles from 0–45 degrees (broadband dielectric coating BD.2). Specifically, at 45 degrees and at a
wavelength of around 800 nm, the relflectivities for P & S polarized light are 99.5% and 99.9%. Since the
reflectivity is defined as the ratio of output to input intensities, the reflection coefficient is the square root
of the reflectivity:

rP =
√
RP ≈ 0.9975 (3.55)

rS =
√
RS ≈ 0.9995 (3.56)

If the light is circularly polarized or a mix of S and P linear polarizations, then it is necessary to include a
small relative phase shift factor, δm. Unfortunately, this value is not given in the optics catalogs and must
be obtained empirically if needed. A simplified form for the mirror matrix is then:

M̂ =
[
rP 0
0 rSe

iδm

]
(3.57)

A fully general mirror matrix would be, in principle, complex and may even contain small nonzero off
diagonal elements.

3.7 Beam Splitting Polarizing Cubes

3.7.1 Matrix Representation

An ideal beam splitting polarizing cube (BSPC) simply splits an incoming beam into it’s two linearly
polarized components. Once separated, the two beam paths are orthogonal, see fig. (3.2). The transmitted
beam is selected by

Ĉt =
[

1 0
0 0

]
(3.58)

and the reflected beam is selected by

Ĉr =
[

0 0
0 1

]
(3.59)
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For the ideal case, the transmitted and reflected beams are pure P & S linear polarizations repectively. In
practice the splitting and polarizing are imperfect. According to RMI (Dr. Zhiming Lu, zlu@rmico.com,
Rocky Mountain Instruments, 106 Laser Drive, Lafayette, CO, 80026, 303-664-5000), our 2” BSPC has an
extinction ratio for the transmitted beam of ≥ 1000 : 1 whereas for the reflected beam it is ≤ 20 : 1. The
transmittance is about ≥ 95%, whereas the reflectance is about ≥ 99.9%. Therefore a more realistic form of
Ĉ can be written. For example, for the transmitted beam:

Ĉt =
[
t1 0
0 t2

]
(3.60)

Tt =
Itransmitted

IinputP
= t21 + t22 (3.61)

et =
ItransmittedP
ItransmittedS

=
t21
t22

(3.62)

where t is the transmittance and et is the extinction ratio for the transmitted beam. Solving for t1 & t2 in
terms of t & et and doing the same for the reflected beam, the more general cube matrices become:

Ĉt =

⎡
⎣

√
Tt

1+e−1
t

0

0
√

Tt

1+et

⎤
⎦ (3.63)

Ĉr =

⎡
⎣

√
Tr

1+er
0

0
√

Tr

1+e−1
r

⎤
⎦ (3.64)

Given the specifications for our cube, the matrices are:

Ĉt ≈
[

0.974 0
0 0.031

]
(3.65)

Ĉr ≈
[

0.213 0
0 0.951

]
(3.66)

The fully general cube matrices could be, in principle, complex and have nonzero off diagonal elements.

3.7.2 Measuring the degree of circular polarization

One can measure the degree of circular polarization of a beam of light by using a rotatable beam splitting
polarizing cube. Note that an input light polarization angle of θ wrt the cube axis is equivalent to having
the cube axis be −θ from the light polarization P axis. Therefore varying θ is equivalent to rotating the
cube. If the incident light is normal to the cube, then the intensity of the light transmitted through the
cube is given by:

It =
∣∣∣Ĉt |E〉

∣∣∣2 = t21 〈EP |EP〉 + t22 〈ES |ES〉

=
E2

0Ttet

1 + et

(
1 − P + 1 + P + 2

√
1 − P 2 cos(2θ)

4

)
+
E2

0Tt

1 + et

(
1 − P + 1 + P − 2

√
1 − P 2 cos(2θ)

4

)

=
E2

0Tt

2

[
1 +

(
et − 1
et + 1

)√
1 − P 2 cos(2θ)

]
(3.67)

The maximum and minimum transmitted intensities are:

Imax =
E2

0Tt

2

[
1 +

(
et − 1
et + 1

)√
1 − P 2

]
(3.68)

Imin =
E2

0Tt

2

[
1 −

(
et − 1
et + 1

)√
1 − P 2

]
(3.69)
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Figure 3.3: Coordinate System of a Waveplate #check#time or space convention fast axis?

Defining the cube efficiency fc and forming the cube asymmetry Ac yields a polarization “pythagorean”
expression:

fc ≡ et − 1
et + 1

(3.70)

Ac ≡ Imax − Imin

Imax + Imin
= fc

√
1 − P 2 (3.71)

1 = P 2 +
(
Ac

fc

)2

(3.72)

where P is the degree if circular polarization.

3.8 Waveplates

3.8.1 Matrix Representation

A waveplate is an optical element that has different indices of refraction along two orthogonal axes, see fig.
(3.3). This results in a net phase shift between the linear components of the polarization vector. First, the
polarization vector has to be expressed in the basis of the waveplate. Therefore, a passive or coordinate
system rotation of angle φ radians is performed,

R̂(φ) =
[

cos(φ) sin(φ)
− sin(φ) cos(φ)

]
(3.73)

followed by a relative phase retardation of β radians,

Ŵ (β) =

⎡
⎣ exp

(
+iβ

2

)
0

0 exp
(
−iβ

2

)
⎤
⎦ (3.74)

and finally a rotation back to the orignal basis, R̂(−φ). The complete waveplate operator is thus:

Ŵ (φ, β) = R̂(−φ)Ŵ (β)R̂(φ) (3.75)

= exp
(
−iβ

2

)⎡
⎣ 1 + 2i exp

(
iβ
2

)
sin

(
β
2

)
cos2(φ) i exp

(
iβ
2

)
sin

(
β
2

)
sin(2φ)

i exp
(
iβ
2

)
sin

(
β
2

)
sin(2φ) 1 + 2i exp

(
iβ
2

)
sin

(
β
2

)
sin2(φ)

⎤
⎦(3.76)

Note that for one complete wave, β = 2π. Typically the fast axis is taken to be vertical.
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3.8.2 Half Waveplate

A half-waveplate has a retardance β = 2π
2 = π. When it is orientated at an angle of φ from a set of reference

axes, the waveplate matrix becomes:

Ŵ 1
2
(φ) = i

[
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
(3.77)

This operation implies that each linear polarization component of some arbitrarily polarized light is rotated
by twice the angle between the linear polarization axis and the waveplate fast axis. If the the linear
polarization is either S or P , then a half-waveplate at an angle φ with respect to the polarization axis
rotates the linear polarization by an angle of 2φ. A half-waveplate at ±45o simplify flips P ↔ S. For pure
circularly polarized light, a half-waveplate orientated at any angle simply flips L ↔ R.

3.8.3 Quarter Waveplate

For a quarter-waveplate with retardance β = 2π
4 = π

2 , orientated at an angle of 45o, the matrix becomes:

Ŵ 1
4

(π
4

)
=

√
2

2

[
1 i
i 1

]
(3.78)

To be explicit, a quarter-waveplate with its fast axis rotated counterclockwise by 45o turns horizontal linearly
polarized light into right circularly polarized light,

Ŵ 1
4

(π
4

)
|P〉 = |R〉 (3.79)

Ŵ 1
4

(π
4

)
|R〉 = i |S〉 (3.80)

Ŵ 1
4

(π
4

)
|S〉 = i |L〉 (3.81)

Ŵ 1
4

(π
4

)
|L〉 = |P〉 (3.82)

and so forth following the simple pattern P → R → S → L → P . An angle of −45o simply reverses the
direction of the arrows. Note that in the RHS of the two middle equations, there is an overall phase factor
(i) which for our purposes is unimportant.

3.8.4 Photoelastic Modulator

A photoelastic modulator is a variable retardance waveplate. The retardance can be fixed at a constant
value or (more importantly) modulated at a frequency νmod (= Ωmod/2π):

β(t) = β0 sin (Ωmodt+ φmod) (3.83)

The PEM that we have (Hinds Instruments, 3175 NW Aloclek, Hillsboro, OR 97124, 503-690-2000) oscillates
at 50 kHz. The ability to modulate the phase retardance and therefore modulate the polarization of the
incident light makes a PEM (in conjunction with a lock-in amplifier) useful as a high precision polarime-
ter. Note the following useful relationships from the Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (Edited by M. Abramowitz and I.A. Stegun, page 361, Dover, 1965):

sin (β0 sin (Ωmodt)) = 2
∞∑

n=0

J2n+1 (β0) sin ((2n+ 1)Ωmodt)

= 2J1 (β0) sin (Ωmodt) + · · · (3.84)

sin (β0 cos (Ωmodt)) = 2
∞∑

n=0

(−)nJ2n+1 (β0) cos ((2n+ 1)Ωmodt)

= 2J1 (β0) cos (Ωmodt) − · · · (3.85)
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cos (β0 sin (Ωmodt)) = J0 (β0) + 2
∞∑

n=1

J2n (β0) cos (2nΩmodt)

= J0 (β0) + 2J2 (β0) cos (2Ωmodt) + · · · (3.86)

cos (β0 cos (Ωmodt)) = J0 (β0) + 2
∞∑

n=1

(−)nJ2n (β0) cos (2nΩmodt)

= J0 (β0) − 2J2 (β0) cos (2Ωmodt) + · · · (3.87)
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Chapter 4

Semiclassical Interaction with Light

4.1 General Formula for Atomic Polarizability

The effect of a uniform, isotropic, and linear medium on a beam of light is given by the (possibly complex)
index of refraction of the medium, n: ∣∣∣�k∣∣∣ =

ω

c
n =

2πn
λvac

(4.1)

where �k is the wave vector of the light and λvac is the wavelength of the light in vacuum. However, in general,
different components of the light polarization vector have different values of �k depending on the symmetry
properties of an anisotropic medium. We will show later that the symmetry of a vapor of alkali metal in a
magnetic field is described by the spherical vector basis; therefore there are in general three different wave
vectors of the light in an alkali vapor: ∣∣∣�kq

∣∣∣ =
ω

c
nq (4.2)

where q = 0,±1 labels the components relative to the atomic coordinate system. The real part of the index
of refraction yields the dispersion relation which affects the phase of the wave. A difference in the real part
for q = ±1 gives rise to circular birefringence; whereas, a difference in the real part between the q = 0 and
q = ± gives rise to linear birefringence. The imaginary part of the index of refraction yields the attenuation
constant which affects the amplitude of the wave. A difference in the imaginary part for q = ±1 gives rise to
circular dichroism; whereas, a difference in the imaginary part between q = 0 and q = ±1 gives rise to linear
dichroism. The details of the atomic system, beyond its symmetry, are hidden in the index of refraction:

nq =
√
εqμq

ε0μ0
(4.3)

where εq & μq are the dielectric constant & permeability of the medium and ε0 & μ0 are the dielectric
constant & permeability of free space. Applying Maxwell’s equations:

�D =
↔
ε �E = ε0 �E + �P = ε0 �E + [A]

〈
�d
〉

(4.4)

where �P is the electric polarization of the medium and [A] is the atomic number density of the medium.
The dipole moment, �d, is evaluated as the expectation value of the quantum mechanical dipole operator

averaged over every atom or molecule in the medium. (The following derivation is analogous to the one
found in Wu, Z., M. Kitano, W. Happer, M. Hou, and J. Daniels. App Opt (25), 4483-92 (1986)). The
Hamiltonian of the system is:

H = H0 + W (4.5)

where W contains the atom-electromagnetic wave interaction and H0 is the hamiltonian of free atom in a
magnetic field. In the interaction picture, the general state of a single atom can be expanded in the eigenbasis
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of H0:

|Ψ〉 =
∑

n

cn(t)e−iωnt |n〉 (4.6)

Ĥ0 |n〉 = En |n〉 = h̄ωn |n〉 (4.7)

If W = 0, then cn would be independent of time. Inserting this into the Schrodinger equation:

Ĥ |Ψ〉 = ih̄
∂ |Ψ〉
∂t

(4.8)

Projecting |k〉 onto both sides of the previous equation and rearranging gives the exact equation:

〈k| Ĥ |Ψ〉 =
∑

n

cn(t)e−iωnt 〈k| Ĥ0 + Ŵ |n〉 (4.9)

= ck(t)e−iωkth̄ωk +
∑

n

cn(t)e−iωnt 〈k| Ŵ |n〉 (4.10)

= ih̄
∑

n

∂cn(t)e−iωnt

∂t
〈k | n〉 (4.11)

= ih̄ [ċk(t) − iωkck(t)] e−iωkt (4.12)
= [ih̄ċk(t) + h̄ωkck(t)] e−iωkt (4.13)

ih̄ċk(t) =
∑

n

cn(t)eiωknt 〈k| Ŵ |n〉 (4.14)

ωkn ≡ ωk − ωn (4.15)

To treat this system of coupled linear differential equations, the following approximations, assumptions, and
simplifications will be made. First we will treat W as a small pertubration (will be justified later). This
means that the eigenstates of H0 are the eigenstates of H to zeroth order. Second, we will only worry about
the interaction between the atom and the electric field component of the electromagnetic wave. This can be
justified by comparing the relative size of the interaction of the atom with the electric and magnetic fields
of the wave:∣∣∣∣WB

WE

∣∣∣∣ =

∣∣∣∣∣−�μ · �B
−�d · �E

∣∣∣∣∣ =
−gμBB
−(−er)E ≈ 2μBB

5ea0cB ≈ 2 eh̄
2m

5e 4πε0h̄2

me2 c
≈ e3h̄

5e4πε0h̄2c
≈ e2

20πε0h̄c
≈ α

5
≈ 10−3 (4.16)

where the characteristic size of a K or Rb atom is given in units of the Bohr radius, a0, and for electromagnetic
waves | �E| = c| �B|. After dropping the magnetic dipole interaction term, W will be expanded using the dipole
approximation:

|�k · �r| = kr =
2πr
λ

≈ 2π5a0

λ
≈ 2π5(0.053 nm)

780 nm
≈ 0.002 � 1 (4.17)

W = −�d · R
{
�E(�r, t)

}
(4.18)

= −(−e)�r ·
[
�Eei(
k·
r−ωt) + �E∗e−i(
k·
r−ωt)

2

]
(4.19)

=
e�r

2
·
[
�E
(
1 + i�k · �r + ...

)
e−iωt + �E∗

(
1 − i�k · �r + ...

)
eiωt

]
(4.20)

≈ e�r

2
·
[
�Ee−iωt + �E∗eiωt

]
(4.21)

Third, we’ll assume that the frequency ω is tuned to near the D1 and D2 transition frequencies. This allows
us to separate the {cn} states into two groups. We’ll label the S 1

2
states by an and the P 1

2 , 32
states by bk.
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This condition splits equation (4.14) into the following two coupled differential equations:

ih̄ḃk(t) =
∑

n

an(t)eiωknt 〈k| Ŵ |n〉 +
∑

j

bj(t)eiωkjt 〈k| Ŵ |j〉 (4.22)

ih̄ȧn(t) =
∑
m

am(t)eiωnmt 〈n| Ŵ |m〉 +
∑

k

bk(t)eiωnkt 〈n| Ŵ |k〉 (4.23)

where m,n only label {a} states and j, k only label {b} states. Note that all we’ve really done at this step
is to relabel the states. Now, since we are only considering transitions between {a} and {b} states and not
among {a} states and {b} states, 〈m| Ŵ |n〉 and 〈j| Ŵ |k〉 are both zero:

ih̄ḃk(t) =
∑

n

an(t)eiωknt 〈k| Ŵ |n〉 (4.24)

ih̄ȧn(t) =
∑

k

bk(t)eiωnkt 〈n| Ŵ |k〉 (4.25)

To reiterate, we are choosing ω to excite the D1 and D2 transitions between the appropriate states in {an}
and {bk}. Fourth, as is standard practice (Demtröder, Wolfgang. Laser Spectroscopy: Basic Concepts and
Instrumentation, Second Enlarged Edition. New York: Springer-Verlag, 1998. page 33, section 2.6.5), we
will add by hand a phenomenological damping term γk which takes into account the finite lifetime of the
excited states. Under our conditions, γk is dominated by pressure broadening, which we use to extract the
3He density. Putting this all together gives:

ih̄ḃk(t) =
e

2

∑
n

an(t)eiωknt
[
〈k|�r · �E |n〉 e−iωt + 〈k|�r · �E∗ |n〉 e+iωt

]
− ih̄bk

γk

2
(4.26)

ih̄ȧn(t) =
e

2

∑
k

bk(t)eiωnkt
[
〈n|�r · �E |k〉 e−iωt + 〈n|�r · �E∗ |k〉 e+iωt

]
(4.27)

Fifth, we’ll assume that the system is in equilibrium and that most alkali atoms are in a {an} ground
state. Under typical conditions in an optical pumping spin exchange cell, the optical pumping rate is about
R ≈ (1 − 103) kHz, whereas the N2 nonradiative quenching rate is about γq ≈ 500 MHz. At equilibrium,
the fractional population of the {bk} states is given by ≈ R/γq ≤ 0.002, therefore:

dan

dt
≈ 0 ⇒ an = constant (4.28)

Pn = a∗nan (4.29)

where Pn the relative population of a ground state an. Since the time dependence of an has been removed,
equation (4.26) is solved in the following way:

bk(t) = u(t)v(t) (4.30)

ḃk = u̇v + uv̇ = f(t) − γk

2
uv (4.31)

ḃk
uv

=
u̇

u
+
v̇

v
=

f(t)
uv

− γk

2
(4.32)

v̇

v
= −γk

2
→ v(t) = v(0)e−

γk
2 t (4.33)

u̇

u
=
f(t)
uv

→ u̇ =
f(t)e+

γk
2 t

v(0)
(4.34)

u(t) =
∫

e

2ih̄v(0)

∑
n

an(t)eiωknt+
γk
2 t

[
〈k|�r · �E |n〉 e−iωt + 〈k|�r · �E∗ |n〉 e+iωt

]
dt (4.35)

=
e

2ih̄v(0)

∑
n

an(t)eiωknt+
γk
2 t

[
〈k|�r · �E |n〉

iωkn − iω + γk

2

e−iωt +
〈k|�r · �E∗ |n〉

iωkn + iω + γk

2

e+iωt

]
(4.36)
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which gives:

bk(t) =
e

2h̄

∑
n

an(t)eiωknt

[
〈k|�r · �E |n〉

−ωkn + ω + iγk

2

e−iωt +
〈k|�r · �E∗ |n〉

−ωkn − ω + iγk

2

e+iωt

]
(4.37)

The sixth approximation is that the second term is negligible relative to the first because ω ≈ ωkn. This is
called the rotating wave approximation and dropping the second term gives:

bk(t) =
e

2h̄

∑
n

an(t)ei(ωkn−ω)t

[
〈k|�r · �E |n〉

ω − ωkn + iγk

2

]
(4.38)

The expecation value of the dipole moment for a single atom
〈
�d
〉

can be calculated using eqn. (4.6):〈
�d
〉

= −e 〈Ψ|�r |Ψ〉 (4.39)

= −e
⎡
⎣∑

m

a∗me
iωmt 〈m| +

∑
j

b∗j(t)e
iωj t 〈j|

⎤
⎦�r

[∑
n

ane
−iωnt |n〉 +

∑
k

bk(t)e−iωkt |k〉
]

(4.40)

= −e
∑
m,n

a∗mane
iωmnt 〈m|�r |n〉 − e

∑
b,j

b∗jbke
iωjkt 〈j|�r |k〉 − e

⎡
⎣∑

m,k

a∗mbke
iωmkt 〈m|�r |k〉 + C.C.

⎤
⎦
(4.41)

The matrix elements connecting states within the same group are zero. Specifically, recall the Wigner-Eckart
Theorem:

〈Jf ,mf | T̂ k
q |Ji,mi〉 =

1√
2Jf + 1

[〈Ji,mi| 〈k, q| |Jf ,mf 〉] 〈Jf‖T k ‖Ji〉 (4.42)

For electric dipole transitions, the reduced matrix element is non-zero only between states of opposite parity.
The parity of the states that we’re considering are given by (−1)L. Therefore states in the {an}(L = S →
L = 0) and the {bk}(L = P → L = 1) groups have even and odd parity respectively. Therefore the matrix
elements bewteen states within the same group (〈n|�r |n〉 & 〈j|�r |k〉) vanish due to parity. This is another
justification our separation of the states into two groups. Note also that the Clebsch-Gordon coefficient in
nonzero only when mf = mi +q and Jf = |Ji − k| . . . Ji +k. This means, in our case, that for a given matrix
element of the form 〈m|�r |k〉, there will be at most only one component of �r that results in a non-zero matrix
element. Dropping the vanishing a∗man & b∗jbk terms and plugging in eqn. (4.38) for bk:〈

�d
〉

= −e
∑
m,k

a∗mbke
iωmkt 〈m|�r |k〉 + C.C. (4.43)

=
e2

2h̄

∑
n,m,k

a∗man(t)ei(ωmn−ω)t

[
〈m|�r |k〉 〈k|�r · �E |n〉
ωkn − ω − iγk

2

]
+ C.C. (4.44)

Averaging this single atom expectation value over all atoms in the cell:

〈a∗nam〉cell = δn
mPn (4.45)〈

�d
〉

cell
=

e2

2h̄

∑
n,m,k

δn
mPna

∗
man(t)ei(ωmn−ω)t

[
〈m|�r |k〉 〈k|�r · �E |n〉
ωkn − ω − iγk

2

]
+ C.C. (4.46)

=
e2

2h̄

∑
n,k

Pn

[
〈n|�r |k〉 〈k|�r · �Ee−iωt |n〉

ωkn − ω − iγk

2

]
+ C.C. (4.47)

The relationship between the induced dipole moment and the applied electric field defines the atomic polar-
izability tensor:

�d =
↔
α ·R �E =

↔
α ·

[
�E + C.C.

2

]
(4.48)
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which immediately yields the atomic polarizability tensor:

↔
α =

e2

h̄

∑
n,k

Pn

[〈n|�r |k〉 〈k|�r |n〉
ωkn − ω − iγk

2

]
(4.49)

4.2 Transition Matrix Elements: Oscillator Strength

4.2.1 Wigner-Eckart Theorem

The probabilty that an electric dipole transition occurs from an initial state a to a final state b is proportional
to the modulus squared matrix element of the component of the dipole operator that is parallel to the
polarization vector of the light:∣∣∣〈b| �ε · �̂d |a〉∣∣∣2 =

∣∣∣〈b| �ε · (−e�̂r) |a〉
∣∣∣2 = e2

∣∣∣〈b|�ε · �̂r |a〉∣∣∣2 (4.50)

When the dipole operator, or analogously the radius vector operator, is written as a tensor of rank one
(see appendix B), the matrix element can be evaluated using the Wigner-Eckart theorem. The theorem was
originially derived from group theory considerations and factorizes the matrix element of a tensor operator
T k

q between states labeled with quantum numbers ni, nf and angular momentum (Ji,mi) and (Jf ,mf ) into
two parts:

〈Jf ,mf | T̂ k
q |Ji,mi〉 = CG

(
�Ji + �k = �Jf ; mi, q,mf

)
× R.M.E. (nf , Jf ;ni, Ji) (4.51)

The first part is simply a Clebsch-Gordon coefficient for the addition of angular momenta such that �Ji+�k = �Jf

with mi,mf , q. The second part, called the reduced matrix element, is a term with the essential property
that it is independant of mi, q,mf . The exact form of the reduced matrix element is somewhat arbitrary
so long as it is independant of mi, q,mf and behaves mathematically appropriately. By this, we mean that
the matrix element is a complex number or equivalently the modulus square matrix element is non-negative.
One form of the reduced matrix element that is often chosen in textbooks, see (Albert Messiah, Quantum
Mechanics, Vol II, New York: John Wiley and Sons, 1962?, page 573, XIII.125) for example is:

R.M.E. =
1√
[Jf ]

× 〈nf , Jf‖T k ‖ni, Ji〉 (4.52)

For the present discussion, we will drop the ni and nf labels because the D1 and D2 transitions of alkali
metals occur within the same n. To insure positive definiteness of the modulus square matrix element, we’ll
explicitly give ourselves flexibility with the phase:

R.M.E. =
(±)fi√

[Jf ]
× i× 〈Jf‖T k ‖Ji〉 (4.53)

The phase ambiguity of the reduced matrix element is related to the choice made in defining the phase
convnetion of the Clebsch-Gordon coefficients. Using the notation of Messiah, the Wigner-Eckart Theorem
can be expressed as:

〈Jf ,mf | T̂ k
q |Ji,mi〉 = i

(±)fi√
[Jf ]

〈(Ji, k)mi, q|Jf ,mf 〉 〈Jf‖T k ‖Ji〉 (4.54)

4.2.2 Phase Convention and Positive Definiteness

Care must be taken in choosing the phase convention when evaluating these matrix elements using the
Wigner-Eckart theorem. Let’s consider the modulus square matrix element of a component q of the radius
vector operator �̂r in the spherical tensor basis (k = 1):

|〈Jf ,mf | rq |Ji,mi〉|2 = 〈Jf ,mf | rq |Ji,mi〉∗ 〈Jf ,mf | rq |Ji,mi〉 (4.55)
= 〈Ji,mi| r∗q |Jf ,mf 〉 〈Jf ,mf | rq |Ji,mi〉 (4.56)
= (−1)q 〈Ji,mi| r−q |Jf ,mf 〉 〈Jf ,mf | rq |Ji,mi〉 (4.57)
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Before expanding these matrix elements using the WET, we’ll introduce the Wigner 3j symbol (E.P. Wigner,
Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, page 290, eqns 24.9a, 24.10,
24.10a, 24.10b) which is related to the Clebsch-Gordon coefficients by:(

Ji k Jf

mi q −mf

)
=

(−1)Ji−k+mf√
[Jf ]

〈(Ji, k)mi, q|Jf ,mf 〉 δmi+q=mf
(4.58)

where the Kronecker Delta insures that angular momentum is conserved (mi + q = mf). Their utility lies in
the fact that they make the symmetry properties of Clebsch-Gordon coefficients more apparent under the
cyclic permutation of all three columns, the interchange of two columns, and the replacement of the second
row with its negative:(

Ji k Jf

mi q −mf

)
=

(
Jf Ji k

−mf mi q

)
=

(
k Jf Ji

q −mf mi

)
(4.59)

= (−1)Ji+k+Jf

(
k Ji Jf

q mi −mf

)
(4.60)

= (−1)Ji+k+Jf

(
Ji k Jf

−mi −q mf

)
(4.61)

Expanding the modulus squared matrix element using Wigner 3j symbol, enforcing mf = mi + q, and
moving things around:

|〈rq〉|2 = (−1)q 〈Ji,mi| r−q |Jf ,mi + q〉 〈Jf ,mi + q| rq |Ji,mi〉 (4.62)

= (−1)qi(±)if (−1)Jf−1+mi

(
Jf 1 Ji

mi + q −q −mi

)
〈Ji‖ r ‖Jf 〉

×(i)(±)fi(−1)Ji−1+mi+q

(
Ji 1 Jf

mi q −(mi + q)

)
〈Jf‖ r ‖Ji〉 (4.63)

= (±)fi(±)if (−1)Jf+Ji+2mi+1

(
Jf 1 Ji

mi + q −q −mi

)(
Ji 1 Jf

mi q −(mi + q)

)
|〈Jf‖ r ‖Ji〉|2

(4.64)

= (±)fi(±)if (−1)2Jf+2Ji+2mi+2

(
Ji 1 Jf

−mi −q mi + q

)(
Ji 1 Jf

mi q −(mi + q)

)
|〈Jf‖ r ‖Ji〉|2

(4.65)

= (±)fi(±)if (−1)3Jf+3Ji+2mi+1

(
Ji 1 Jf

mi q −(mi + q)

)(
Ji 1 Jf

mi q −(mi + q)

)
|〈Jf‖ r ‖Ji〉|2

(4.66)

= (±)fi(±)if (−1)3Jf+3Ji+2mi+1

(
Ji 1 Jf

mi q −(mi + q)

)2

|〈Jf‖ r ‖Ji〉|2 (4.67)

The last two terms are positive. For the left hand side of the equation to be positive (as it should be), the
following must be true for D1 transitions (Ji, |mi|, Jf = 1

2 ):

+1 = [(±)fi(±)if ] 1
2
(−1)

3
2+ 3

2±1+1 (4.68)

= [(±)fi(±)if ] 1
2
(−1)4±1 (4.69)

= −[(±)fi(±)if ] 1
2

(4.70)

s1 = [(±)fi] 1
2

= −[(±)if ] 1
2

(4.71)

For D2 transitions, the corresponding relations are (Ji, |mi| = 1
2 ; Jf = 3

2 ):

+1 = [(±)fi(±)if ] 3
2
(−1)

9
2+ 3

2±1+1 (4.72)
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= [(±)fi(±)if ] 3
2
(−1)7±1 (4.73)

= [(±)fi(±)if ] 3
2

(4.74)

s2 = [(±)fi] 3
2

= [(±)if ] 3
2

(4.75)

In both cases, we have hidden the sign in an s factor. The positive definiteness of the modulus square matrix
element defines for the phase convention of the reduced matrix element. For a D1 transition, the reduced
matrix elements for a matrix element and its complex conjugate must have opposite signs. However, the
reduced matrix elements for a D2 matrix element and its complex conjugate must have the same sign.

4.2.3 Connecting the Radial Integral to Physical Observables

The double barred term
〈
b‖T k‖a〉 of the reduced matrix element (also sometimes called the reduced matrix

element itself) is a radial integral. In practice, rather than being calculated from first principles, the value of
the radial integral for the radius vector between atomic states is inferred from measurements of the natural
atomic lifetimes. The spontaneous decays of the P 1

2
and P 3

2
excited states for neutral alkali atoms are

dominated by the D1 and D2 transitions. Therefore the lifetime τ of these states are nearly equal to the
inverse of the spontaneous decay probability rate (as known as the Einstein A coefficient), see A. Corney,
Atomic and Laser Spectroscopy, Clarendon Press, Oxford, 1977, page 103, equation 4.23:

τ−1
b = Ab =

e2ω3
ab

3πε0h̄c3

∑
mb

[Jb]

∑
ma

∣∣∣〈Ja,ma| �̂r |Jb,mb〉
∣∣∣2 (4.76)

=
4αω3

ab

3c2

∑
mb

[Jb]︸ ︷︷ ︸
mean

∑
ma︸︷︷︸
sum

∣∣∣〈Ja,ma| �̂r |Jb,mb〉
∣∣∣2 (4.77)

where Ab is averaged over all the initial (upper mb) states and summed over all the final (lower ma) states.
Typical lifetimes for alkali metals are tens of nanoseconds, see table blah. Another form of the averaged,
summed modulus square matrix element is the oscillator strength. In the classical picture, an atom is
modelled as a collection of many damped oscillators with frequencies that correspond to all possible atomic
transitions. An atom in a state a can make transitions to other states through a subset of oscillators that
connect that state with all other states. The fraction of oscillators that connect state a to another state b
is called the oscillator strength. For absorbtion (emission), the oscillator strength is chosen to be positive
(negative) by convention. Just as for the probability rate, the modulus square matrix element is averaged
over initial (lower ma) states and summed over final (upper mb) states. For transitions from initial state a
to final state b, where the sign is chosen based on the physical process under consideration, the oscillator
strength is:

fa→b = ±2mωab

3h̄

∑
ma

2Ja + 1

∑
mb

|〈Ja,mb|�r |Ja,mb〉|2 (4.78)

By convention, we will always refer to the absorption oscillator strength unless otherwise noted. In addition,
since we will always be discussing transitions from the S 1

2
ground states to one of either the P 1

2
or P 3

2
excited

states, the oscillator strength will simply be labeled by the J of the final excited state.
Both the oscillator strength and the spontaneous decay rate involve sums over the intial and final m

states. This sum, which depends only on Ja, Jb, and the reduced matrix element, is called the line strength
(first introduced in E.U.Condon and G.H. Shortley, The Theory of Atomic Spectra, Cambridge University
Press, 1967, page 98) and for transitions between the lower state a and the higher state b, it is given by:

Sab = Sba =
∑
ma

∑
mb

∣∣∣〈Ja,ma| e�̂r |Jb,mb〉
∣∣∣2 (4.79)

=
∑
ma

∑
mb

∣∣∣〈Jb,mb| e�̂r |Ja,ma〉
∣∣∣2 (4.80)
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=
3h̄e2

2mωab
· [Ja]fb (4.81)

=
3c2[Jb]e2

4αω3
ab

· 1
τb

(4.82)

=
3πε0h̄c3[Jb]

ω3
ab

·Ab (4.83)

Note that the line strength is explicitly defined as a positive quantity. This insures that the aborption oscil-
lator strengh fb, spontaneous lifetime τb, and the spontaneous probability rate are all positive. Evaluating
the line strength using WET:

Sab =
∑
ma

∑
mb

∣∣∣〈Jb,mb| e�̂r |Ja,ma〉
∣∣∣2 (4.84)

=
∑
ma

∑
mb

∣∣∣∣∣〈Jb,mb| e
∑

q

(−1)qr̂q ε̂−q |Ja,ma〉
∣∣∣∣∣
2

(4.85)

=
∑
ma

∑
mb

〈Ja,ma| e
∑
q′

(−1)q′
r̂q′ ε̂−q′ |Jb,mb〉 · 〈Jb,mb| e

∑
q

(−1)qr̂q ε̂−q |Ja,ma〉 (4.86)

=
∑
ma

∑
mb

∑
q

(−1)q 〈Ja,ma| er̂−q |Jb,mb〉 〈Jb,mb| er̂q |Ja,ma〉 (4.87)

= ±s2a,bi
2

∑
ma,mb,q

(−1)q 〈(Jb, 1)mb,−q|Ja,ma〉√
[Ja]

〈Ja||er||Jb〉 〈(Ja, 1)ma, q|Jb,mb〉√
[Jb]

〈Jb||er||Ja〉

(4.88)

= |〈Jb||er||Ja〉|2 · ςb (4.89)

ςb = ∓
∑
ma,q

(−1)q√
[Ja][Jb]

〈(Jb, 1)ma + q,−q|Ja,ma〉 〈(Ja, 1)ma, q|Jb,ma + q〉 (4.90)

where the lower (upper) sign is taken for D1 (D2) transitions to insure positive definiteness. Again since
we will always be discussing transitions from the S 1

2
ground states to one of either the P 1

2
or P 3

2
excited

states, the Clebsch-Gordon sum ς will simply be labeled by the J of the final excited state. This gives us the
following equivalent relationships between the modulus squared reduced matrix element (which is difficult to
calculate accurately from theory) with physical observables (which we determine empirically) for transitions
from the lower level a to the higher level b:

|〈Jb||r||Ja〉|2 =
Sab

ςabe2
(4.91)

=
3h̄

2mωab
· [Ja]fb

ςb
(4.92)

=
3c2

4αω3
ab

· [Jb]
ςbτb

(4.93)

=
3πε0h̄c3

e2ω3
ab

· [Jb]Ab

ςb
(4.94)

4.2.4 Evaluation of the Clebsch-Gordon Coefficients and Sums

The general forms of the D1 matrix elements are:〈
P 1

2
, q ± 1

2

∣∣∣∣ rq
∣∣∣∣S 1

2
,±1

2

〉
=

〈(
1
2
, 1

)
± 1

2
, q|1

2
, q ± 1

2

〉(
i
s1√
2

)〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.95)

= −i s1√
2

〈(
1,

1
2

)
q,±1

2
|1
2
, q ± 1

2

〉〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.96)
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= ±is1
√

1 ∓ q

6

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.97)〈

S 1
2
, q ± 1

2

∣∣∣∣ rq
∣∣∣∣P 1

2
,±1

2

〉
=

〈(
1
2
, 1

)
± 1

2
, q|1

2
, q ± 1

2

〉(
−i s1√

2

)〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(4.98)

= i
s1√
2

〈(
1,

1
2

)
q,±1

2
|1
2
, q ± 1

2

〉〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(4.99)

= ∓is1
√

1 ∓ q

6

〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(4.100)

(4.101)

The general forms of the D2 matrix elements are:〈
P 3

2
, q ± 1

2

∣∣∣∣ rq
∣∣∣∣S 1

2
,±1

2

〉
=

〈(
1
2
, 1

)
± 1

2
, q|3

2
, q ± 1

2

〉(
i
s2
2

)〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.102)

= i
s2
2

〈(
1,

1
2

)
q,±1

2
|3
2
, q ± 1

2

〉〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.103)

= is2

√
2 ± q

12

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.104)〈

S 1
2
,m± 1

∣∣∣ r± ∣∣∣P 3
2
,m

〉
=

〈(
3
2
, 1

)
m,±1|1

2
,m± 1

〉(
i
s2√
2

)〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(4.105)

= is2

√(
1
2 ∓m

) (
3
2 ∓m

)
24

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(4.106)〈

S 1
2
,±1

2

∣∣∣∣ r0
∣∣∣∣P 3

2
,±1

2

〉
=

〈(
3
2
, 1

)
± 1

2
, 0|1

2
,±1

2

〉(
i
s2√
2

)〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(4.107)

= −is2
√

1
6

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(4.108)

The D1 matrix elements are:〈
S 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 1

2
,−1

2

〉
=

〈
P 1

2
,− 1

2

∣∣∣ r− ∣∣∣S 1
2
,+ 1

2

〉
= +is1

√
1
3

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.109)

−
〈
S 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣P 1

2
,+

1
2

〉
=

〈
P 1

2
,+ 1

2

∣∣∣ r0 ∣∣∣S 1
2
,+ 1

2

〉
= +is1

√
1
6

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.110)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 1

2
,−1

2

〉
=

〈
P 1

2
,− 1

2

∣∣∣ r0 ∣∣∣S 1
2
,− 1

2

〉
= −is1

√
1
6

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.111)〈

S 1
2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 1

2
,+

1
2

〉
=

〈
P 1

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= −is1

√
1
3

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.112)〈

S 1
2

∥∥∥ r ∥∥∥P 1
2

〉
=

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.113)

The D2 matrix elements are:〈
S 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 3

2
,−1

2

〉
=

〈
P 3

2
,− 1

2

∣∣∣ r− ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
1
12

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.114)〈

S 1
2
,−1

2

∣∣∣∣ r+
∣∣∣∣P 3

2
,−3

2

〉
=

〈
P 3

2
,− 3

2

∣∣∣ r− ∣∣∣S 1
2
,− 1

2

〉
= +is2

1
2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.115)

−
〈
S 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣P 3

2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r0 ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
1
6

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.116)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 3

2
,−1

2

〉
=

〈
P 3

2
,− 1

2

∣∣∣ r0 ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
1
6

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.117)
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〈
S 1

2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
1
12

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.118)〈

S 1
2
,+

1
2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

3
2

〉
=

〈
P 3

2
,+ 3

2

∣∣∣ r+ ∣∣∣S 1
2
,+ 1

2

〉
= +is2

1
2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.119)〈

S 1
2

∥∥∥ r ∥∥∥P 3
2

〉
=

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.120)

Note that the radial integral is real. Putting these results together allows us to evaluate the Clebsch-Gordon
sums:

ς 1
2

= s21

[
− i√

3
i√
3

+
−i√

6
i√
6

+
i√
6
−i√

6
− −i√

3
−i√

3

]
= +1 (4.121)

ς 3
2

= s22

[
− i√

12
i√
12

− i

2
i

2
+

−i√
6
i√
6

+
−i√

6
i√
6
− i√

12
i√
12

− i

2
i

2

]
= +1 (4.122)

Therefore the radial integrals for the D1 and D2 transitions are:∣∣∣〈PJ‖ r
∥∥∥S 1

2

〉∣∣∣2 =
3h̄
mωJ

fJ (4.123)

4.2.5 The Radial Integral in the coupled LS basis

In the uncoupled basis, there is only one radial integral between the S and P states. First we must fix the
phase convention of the uncoupled matrix elements:

|〈rq〉|2 = (−1)q

〈
±1

2

∣∣∣∣
S

〈0|L r−q |q〉L
∣∣∣∣±1

2

〉
S

〈
±1

2

∣∣∣∣
S

〈q|L rq |0〉L
∣∣∣∣±1

2

〉
S

(4.124)

= (−1)q 〈0|L r−q |q〉L 〈q|L rq |0〉L (4.125)

= (±)PS(±)SP (−1)3+1

(
0 1 1
0 q −q

)2

|〈P‖ r ‖S〉|2 (4.126)

+1 = (±)PS(±)SP (−1)4 (4.127)
= (±)PS(±)SP (4.128)

s = (±)PS = (±)SP (4.129)

When the radial integral is evaluated in the coupled LS basis J , there is radial integral for each J . The rela-
tionship between the radial integrals evaluated in the two different basis sets can be shown by an expansion
in the uncoupled basis and by application of the WET:〈

P 3
2
,+

3
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,+

1
2

〉
= 〈+1|L

〈
+

1
2

∣∣∣∣
S

r+ |0〉L
∣∣∣∣+1

2

〉
S

(4.130)

= 〈+1| r+ |0〉L
〈

+
1
2
| + 1

2

〉
S

(4.131)

= 〈(0, 1) 0,+1|1,+1〉
(
is√
3

)
〈P‖ r ‖S〉 (4.132)

=
is√
3
〈P‖ r ‖S〉 (4.133)

= +is2
1
2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.134)〈

P 1
2
,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉
=

(√
2
3
〈+1|L

〈
−1

2

∣∣∣∣
S

−
√

1
3
〈0|L

〈
+

1
2

∣∣∣∣
S

)
r+ |0〉L

∣∣∣∣−1
2

〉
S

(4.135)

=

√
2
3
〈+1| r+ |0〉L

〈
−1

2
| − 1

2

〉
S

−
√

1
3
〈0| r+ |0〉L

〈
+

1
2
| − 1

2

〉
S

(4.136)
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=

√
2
3
〈+1| r+ |0〉L (4.137)

=

√
2
3
〈(0, 1) 0,+1|1,+1〉

(
is√
3

)
〈P‖ r ‖S〉 (4.138)

=
is
√

2
3

〈P‖ r ‖S〉 (4.139)

= −is1
√

1
3

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
(4.140)

We can do the same calculation for the complex conjugates of the same matrix elements:〈
S 1

2
,+

1
2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

3
2

〉
= 〈0|L

〈
+

1
2

∣∣∣∣
S

r− |+1〉L
∣∣∣∣+1

2

〉
S

(4.141)

=
is√
3
〈S‖ r ‖P 〉 (4.142)

= +is2
1
2

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
(4.143)〈

S 1
2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 1

2
,+

1
2

〉
= 〈0|L

〈
−1

2

∣∣∣∣
S

r+

(√
2
3
|+1〉L

∣∣∣∣−1
2

〉
S

−
√

1
3
|0〉L

∣∣∣∣+1
2

〉
S

)
(4.144)

=
is
√

2
3

〈S‖ r ‖P 〉 (4.145)

= −is1
√

1
3

〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
(4.146)

Note that the reduced matrix element in the uncoupled LS basis does not have any sign ambiguity due to
postive definiteness, because for the transitions under consideration, the Clebsch-Gordon coefficient is always
+1. Note also that the radial integral in the uncoupled basis is real. Since the radial integral is independant
of mL and mJ , we only had to evaluate one matrix element for each J . Summarizing these results:

s2

〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
= +s

2√
3
〈P‖ r ‖S〉 (4.147)

s2

〈
S 1

2

∥∥∥ r ∥∥∥P 3
2

〉
= +s

2√
3
〈S‖ r ‖P 〉 (4.148)

s1

〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉
= −s

√
2
3
〈P‖ r ‖S〉 (4.149)

s1

〈
S 1

2

∥∥∥ r ∥∥∥P 1
2

〉
= −s

√
2
3
〈S‖ r ‖P 〉 (4.150)

where s21 = s22 = s2 = +1. This implies the following relationships between the quantities relating to D1 and
D2 transitions:

s1s2 = −1 (4.151)〈
P 3

2

∥∥∥ r ∥∥∥S 1
2

〉
〈
P 1

2

∥∥∥ r ∥∥∥S 1
2

〉 = −
√

2
s1
s2

= +
√

2 (4.152)

〈PJ‖ r
∥∥∥S 1

2

〉
=

〈
S 1

2

∥∥∥ r ‖PJ〉 = +

√
3h̄
mωJ

fJ (4.153)

S 3
2

S 1
2

= 2 (4.154)

f 3
2

f 1
2

= 2

(
ω 3

2

ω 1
2

)
(4.155)
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τ 3
2

τ 1
2

=

(
ω 1

2

ω 3
2

)3

(4.156)

A 3
2

A 1
2

=

(
ω 3

2

ω 1
2

)3

(4.157)

4.2.6 Explicit Forms of the Matrix Elements

First we’ll calculate the modulus square matrix elements neglecting fine structure mixing. This is easily
done given the following matrix elements in terms of the oscillator strength. The D1 matrix elements are:

〈
S 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 1

2
,−1

2

〉
=

〈
P 1

2
,− 1

2

∣∣∣ r− ∣∣∣S 1
2
,+ 1

2

〉
= +is1

√
h̄

m

f 1
2

ω 1
2

(4.158)

−
〈
S 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣P 1

2
,+

1
2

〉
=

〈
P 1

2
,+ 1

2

∣∣∣ r0 ∣∣∣S 1
2
,+ 1

2

〉
= +is1

√
h̄

2m

f 1
2

ω 1
2

(4.159)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 1

2
,−1

2

〉
=

〈
P 1

2
,− 1

2

∣∣∣ r0 ∣∣∣S 1
2
,− 1

2

〉
= −is1

√
h̄

2m

f 1
2

ω 1
2

(4.160)

〈
S 1

2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 1

2
,+

1
2

〉
=

〈
P 1

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= −is1

√
h̄

m

f 1
2

ω 1
2

(4.161)

The D2 matrix elements are:〈
S 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣P 3

2
,−1

2

〉
=

〈
P 3

2
,− 1

2

∣∣∣ r− ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
h̄

4m

f 3
2

ω 3
2

(4.162)

〈
S 1

2
,−1

2

∣∣∣∣ r+
∣∣∣∣P 3

2
,−3

2

〉
=

〈
P 3

2
,− 3

2

∣∣∣ r− ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
3h̄
4m

f 3
2

ω 3
2

(4.163)

−
〈
S 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣P 3

2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r0 ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
h̄

2m

f 3
2

ω 3
2

(4.164)

−
〈
S 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣P 3

2
,−1

2

〉
=

〈
P 3

2
,− 1

2

∣∣∣ r0 ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
h̄

2m

f 3
2

ω 3
2

(4.165)

〈
S 1

2
,−1

2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

1
2

〉
=

〈
P 3

2
,+ 1

2

∣∣∣ r+ ∣∣∣S 1
2
,− 1

2

〉
= +is2

√
h̄

4m

f 3
2

ω 3
2

(4.166)

〈
S 1

2
,+

1
2

∣∣∣∣ r−
∣∣∣∣P 3

2
,+

3
2

〉
=

〈
P 3

2
,+ 3

2

∣∣∣ r+ ∣∣∣S 1
2
,+ 1

2

〉
= +is2

√
3h̄
4m

f 3
2

ω 3
2

(4.167)

The modulus squared matrix elements for transitions involving the absorption of photon with helicity +1
are calculated below: ∣∣∣∣

〈
P 1

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

m

f 1
2

ω 1
2

(4.168)

∣∣∣∣
〈
P 3

2
,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

4m

f 3
2

ω 3
2

(4.169)

∣∣∣∣
〈
P 3

2
,+

3
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
3h̄
4m

f 3
2

ω 3
2

(4.170)
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The modulus squared matrix elements for transitions involving the absorption of photon with helicity 0 are
calculated below: ∣∣∣∣

〈
P 1

2
,−1

2

∣∣∣∣ r0
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

2m

f 1
2

ω 1
2

(4.171)

∣∣∣∣
〈
P 1

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

2m

f 1
2

ω 1
2

(4.172)

∣∣∣∣
〈
P 3

2
,−1

2

∣∣∣∣ r0
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
h̄

2m

f 3
2

ω 3
2

(4.173)

∣∣∣∣
〈
P 3

2
,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

2m

f 3
2

ω 3
2

(4.174)

The modulus squared matrix elements for transitions involving the absorption of photon with helicity −1:∣∣∣∣
〈
P 1

2
,−1

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

m

f 1
2

ω 1
2

(4.175)

∣∣∣∣
〈
P 3

2
,−1

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =
h̄

4m

f 3
2

ω 3
2

(4.176)

∣∣∣∣
〈
P 3

2
,−3

2

∣∣∣∣ r−
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =
3h̄
4m

f 3
2

ω 3
2

(4.177)

Because some of the excited eigenstates are mixed, now we’ll evaluate the modulus squared matrix element
in a general form.

|〈rq〉|2 =
∣∣∣(c∗1 〈P 3

2
,m+ q

∣∣∣ + c∗2
〈
P 1

2
,m+ q

∣∣∣) rq ∣∣∣S 1
2
,m

〉∣∣∣2 (4.178)

=
∣∣∣c∗1 〈P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
+ c∗2

〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 (4.179)

= |c1|2
∣∣∣〈P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 + |c2|2
∣∣∣〈P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2
+c∗1

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
· c2

〈
S 1

2
,m

∣∣∣ r∗q ∣∣∣P 1
2
,m+ q

〉
+c1

〈
S 1

2
,m

∣∣∣ r∗q ∣∣∣P 3
2
,m+ q

〉
· c∗2

〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.180)

The c1 and c2 are the fine mixing coefficients which are real:

|〈rq〉|2 = c21

∣∣∣〈P 3
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 + c22

∣∣∣〈P 1
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2
+(−1)qc1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 1
2
,m+ q

〉
+(−1)qc1c2

〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 3
2
,m+ q

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.181)

Noting the following relationship:

〈PJ ,m+ q| rq
∣∣∣S 1

2
,m

〉
= (−1)(−1)q

〈
S 1

2
,m

∣∣∣ r−q |PJ ,m+ q〉 (4.182)

the cross terms can be written:

cross terms = (−1)qc1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 1
2
,m+ q

〉
+(−1)qc1c2

〈
S 1

2
,m

∣∣∣ r−q

∣∣∣P 3
2
,m+ q

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.183)

56



= (−1)qc1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(−1)(−1)q

〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
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〉
+(−1)qc1c2(−1)(−1)q

〈
P 3

2
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2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.184)

= (−1)1+q+q2c1c2
〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.185)

= −2c1c2
〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.186)

Therefore the general form of the modulus square matrix element accounting for fine structure mixing is:

|〈rq〉|2 = c21

∣∣∣〈P 3
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2 + c22

∣∣∣〈P 1
2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉∣∣∣2
−2c1c2

〈
P 3

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉〈
P 1

2
,m+ q

∣∣∣ rq ∣∣∣S 1
2
,m

〉
(4.187)

For the following, we’ve used equations (1.88) and (4.155). For the transitions involving light with +1
helicity: ∣∣∣∣

〈
P−,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =

(
h̄

m

f 1
2

ω 1
2

)[
1 − a1a

−
2

√
2 −

(
a−2

)2

2

]
(4.188)

∣∣∣∣
〈
P+,+

1
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,−1

2

〉∣∣∣∣2 =

(
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4m

f 3
2

ω 3
2
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−
2 2

√
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(
a−2

)2
]

(4.189)

∣∣∣∣
〈
P+,+

3
2

∣∣∣∣ r+
∣∣∣∣S 1

2
,+

1
2
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3h̄
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f 3
2

ω 3
2

(4.190)

For the transitions involving light with 0 helicity:∣∣∣∣
〈
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2

∣∣∣∣ r0
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(4.191)

∣∣∣∣
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]
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∣∣∣∣
〈
P+,+

1
2

∣∣∣∣ r0
∣∣∣∣S 1

2
,+

1
2

〉∣∣∣∣2 =

(
h̄

2m

f 3
2

ω 3
2

)[
1 − a1a

+
2

√
2 −

(
a+
2

)2

2

]
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For the transitions involving light with −1 helicity:∣∣∣∣
〈
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2
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2
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1
2
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√
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(
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∣∣∣∣
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√
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∣∣∣∣
〈
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2
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2
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2
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3h̄
4m

f 3
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ω 3
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(4.197)

4.3 Explicit Calculation of Atomic Polarizability

The consquences of the previous section imply that we can write the atomic polarizability as:
↔
α=

∑
q

ε̂∗qαqε̂q (4.198)
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Writing out equation (4.4) using the atomic polarizability and expanding in the spherical vector basis:

�D = ε0

(
1 +

[A]
↔
α

ε0

)
�E (4.199)

∑
q

Dq ε̂
∗
q =

∑
q

ε0

(
1 +

[A]
ε0

∑
p

ε̂∗pαpε̂p

)
Eq ε̂

∗
q (4.200)

∑
q

Dq ε̂
∗
q =

∑
q

ε0

(
Eq ε̂q +

[A]
ε0

∑
p

ε̂∗pαpEq ε̂p · ε̂∗q
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(4.201)

∑
q

Dq ε̂
∗
q =

∑
q

ε0

(
1 +

[A]
ε0
αq

)
Eq ε̂

∗
q (4.202)

Dq = εqEq = ε0

(
1 +

[A]
ε0
αq

)
Eq (4.203)

εq = ε0

(
1 +

[A]
ε0
αq

)
↔ nq =

√
1 +

[A]
ε0
αq (4.204)

Using the result that n+ q = k from the previous section, the components of the atomic polarizability are:〈↔
α
〉

=
e2

h̄

∑
n,k

Pn

[ 〈n|�r |k〉 〈k|�r |n〉
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]
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∑
q
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(4.206)

αq =
e2

h̄

∑
n,k
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[ 〈n| r∗q |k〉 〈k| rq |n〉
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2

]
(4.207)

αq =
e2
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∑
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2

(4.208)

The atomic polarizability for q = +1:
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The atomic polarizability for q = −1:
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The atomic polarizability for q = 0:
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Plugging in the values for the matrix elements, the atomic polarizability for q = +1:
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1 − a1a

−
2

√
2 −

(
a−2

)2

2

](
ω[P−,+ 1

2 ] − ω[S,− 1
2 ] − ω − i

γ−
2

)−1

+ (1 − P )

(
f 3

2

2ω 3
2

)[
1 + a1a

−
2 2

√
2 +

(
a−2

)2
] (
ω[P+,+ 1

2 ] − ω[S,−1
2 ] − ω − i

γ+

2

)−1

+ (1 + P )

(
3f 3

2

2ω 3
2

)(
ω[P+,+ 3

2 ] − ω[S,+ 1
2 ] − ω − i

γ+

2

)−1

(4.212)

The atomic polarizability for q = 0:

4m
e2
α0 = + (1 − P )

(
f 1

2

ω 1
2

)[
1 − a1a

−
2 2

√
2 +

(
a−2

)2
] (
ω[P−,− 1

2 ] − ω[S,− 1
2 ] − ω − i

γ−
2

)−1

+ (1 − P )

(
f 3

2

ω 3
2

)[
1 + a1a

−
2

√
2 −

(
a−2

)2

2

](
ω[P+,− 1

2 ] − ω[S,−1
2 ] − ω − i

γ+

2

)−1

+ (1 + P )

(
f 1

2

ω 1
2

)[
1 + a1a

+
2 2

√
2 +

(
a+
2

)2
] (
ω[P−,+ 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ−
2

)−1

+ (1 + P )

(
f 3

2

ω 3
2

)[
1 − a1a

+
2

√
2 −

(
a+
2

)2

2

](
ω[P+,+ 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ+

2

)−1

(4.213)

The atomic polarizability for q = −1:

4m
e2
α− = + (1 + P )

(
2f 1

2

ω 1
2

)[
1 + a1a

+
2

√
2 −

(
a+
2

)2

2

](
ω[P−,− 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ−
2

)−1

+ (1 + P )

(
f 3

2

2ω 3
2

)[
1 − a1a

+
2 2

√
2 +

(
a+
2

)2
] (
ω[P+,− 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ+

2

)−1

+ (1 − P )

(
3f 3

2

2ω 3
2

)(
ω[P+,− 3

2 ] − ω[S,− 1
2 ] − ω − i

γ+

2

)−1

(4.214)

We can decompose the atomic polarizability into it’s real and imaginary parts using:(
ω0 − ω − i

γ

2

)−1

=
1

ω0 − ω − iγ
2

(
ω0 − ω + iγ

2

ω0 − ω + iγ
2

)
(4.215)

=

[
ω0 − ω

(ω0 − ω)2 + γ2/4

]
+ i

[
γ/2

(ω0 − ω)2 + γ2/4

]
(4.216)

The real and imaginary parts of the atomic polarizability for q = +1:

4m
e2

�α+ = + (1 − P )

(
2f 1

2

ω 1
2

)[
1 − a1a

−
2

√
2 −

(
a−2

)2

2

]⎡
⎢⎣ ω[P−,+ 1

2 ] − ω[S,− 1
2 ] − ω(

ω[P−,+ 1
2 ] − ω[S,− 1

2 ] − ω
)2

+ γ2−/4

⎤
⎥⎦
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+ (1 − P )

(
f 3

2

2ω 3
2

)[
1 + a1a

−
2 2

√
2 +

(
a−2

)2
]⎡⎢⎣ ω[P+,+ 1

2 ] − ω[S,− 1
2 ] − ω(

ω[P+,+ 1
2 ] − ω[S,− 1

2 ] − ω
)2

+ γ2
+/4

⎤
⎥⎦

+ (1 + P )

(
3f 3

2

2ω 3
2

)⎡
⎢⎣ ω[P+,+ 3

2 ] − ω[S,+ 1
2 ] − ω(

ω[P+,+ 3
2 ] − ω[S,+ 1

2 ] − ω
)2

+ γ2−/4

⎤
⎥⎦ (4.217)

4m
e2

�α+ = + (1 − P )

(
2f 1

2

ω 1
2

)[
1 − a1a

−
2

√
2 −

(
a−2

)2

2

]⎡
⎢⎣ γ−/2(

ω[P−,+ 1
2 ] − ω[S,− 1

2 ] − ω
)2

+ γ2−/4

⎤
⎥⎦

+ (1 − P )

(
f 3

2

2ω 3
2

)[
1 + a1a

−
2 2

√
2 +

(
a−2

)2
]⎡⎢⎣ γ+/2(

ω[P+,+ 1
2 ] − ω[S,− 1

2 ] − ω
)2

+ γ2
+/4

⎤
⎥⎦

+ (1 + P )

(
3f 3

2

2ω 3
2

)⎡
⎢⎣ γ+/2(

ω[P+,+ 3
2 ] − ω[S,+ 1

2 ] − ω
)2

+ γ2−/4

⎤
⎥⎦ (4.218)

The real and imaginary parts of the atomic polarizability for q = 0:

4m
e2
α0 = + (1 − P )

(
f 1

2

ω 1
2

)[
1 − a1a

−
2 2

√
2 +

(
a−2

)2
] (
ω[P−,− 1

2 ] − ω[S,− 1
2 ] − ω − i

γ−
2

)−1

+ (1 − P )

(
f 3

2

ω 3
2

)[
1 + a1a

−
2

√
2 −

(
a−2

)2

2

](
ω[P+,− 1

2 ] − ω[S,−1
2 ] − ω − i

γ+

2

)−1

+ (1 + P )

(
f 1

2

ω 1
2

)[
1 + a1a

+
2 2

√
2 +

(
a+
2

)2
] (
ω[P−,+ 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ−
2

)−1

+ (1 + P )

(
f 3

2

ω 3
2

)[
1 − a1a

+
2

√
2 −

(
a+
2

)2

2

](
ω[P+,+ 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ+

2

)−1

(4.219)

The real and imaginary parts of the atomic polarizability for q = −1:

4m
e2
α− = + (1 + P )

(
2f 1

2

ω 1
2

)[
1 + a1a

+
2

√
2 −

(
a+
2

)2

2

](
ω[P−,− 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ−
2

)−1

+ (1 + P )

(
f 3

2

2ω 3
2

)[
1 − a1a

+
2 2

√
2 +

(
a+
2

)2
] (
ω[P+,− 1

2 ] − ω[S,+ 1
2 ] − ω − i

γ+

2

)−1

+ (1 − P )

(
3f 3

2

2ω 3
2

)(
ω[P+,− 3

2 ] − ω[S,− 1
2 ] − ω − i

γ+

2

)−1

(4.220)

Before explicitly writing the forms of αq for a polarized alkali vapor in a magnetic field, let’s note the
following:

1. The energies of the ± 1
2 states in the P terms willuse the low field energies approximations. If necessary,

the exact forms could be used.

2. The mixing coefficients a1 & a±2 are only relevant for the mJ = ± 1
2 states in the P terms. Only terms

second order or higher in field in these coefficients depend on the sign of mJ .

3. P± is the fraction of atoms in the mJ = ± 1
2 ground state. Since we’ve argued that most atoms are in

the ground state: P+ + P− ≈ 1 and the polarization is P+ − P− ≈ P .
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4. The electron mass is m and the absolute value of the electron charge is e.

5. In principle, the oscillator strengths f 1
2 , 32

are affected by the temperature and the density of the buffer
gas. We will make the approximation that for both Rb and K that f 1

2
≈ 1

3 and that f 3
2
≈ 2

3 . Most
book values are quoted with an uncertainty of about 10%. Therefore, using these approximate values
for the oscillator strengths under most conditions is good enough.

6. To be consistent with the literature, we’ll make the following substitutions:

Δ 1
2 , 3

2
= ω − ω 1

2 , 32
(4.221)

Ω =
μB

h̄
B (4.222)

Atomic Polarizability for Circularly Polarized Light

Putting this altoghether, the atomic polarizability for right circularly polarized light is:

h̄

e2
α+ = P−

⎡
⎣a2

1

(
h̄

mω 1
2

f 1
2

)
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2
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√√√√(
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⎦
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)
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2
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3
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√√√√(
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⎦
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(

5
3

)
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2
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2
+

(
5
3

)
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i

2
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2
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2
+
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2
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i

2
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2
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]
(4.223)

The atomic polarizability for left circularly polarized light is:
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√√√√(
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⎦
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−
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)
+ a2

1

(
h̄

4mω 3
2

f 3
2

)
∓ 2a1a2

√√√√(
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⎦
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2
−

(
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ω 3

2
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2
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2
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+
(
ω 3

2
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i

2
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(4.224)

Rearranging a few things:

m

e2
α± = P∓

⎡
⎣a2

1

(
f 1

2

ω 1
2

)
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2

(
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2
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)
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√√√√(
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⎦
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×
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2
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±
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2
±

(
5
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(4.225)

Applying all of these approximations and making substitutions to be consistent with the literature:

P± =
1 ± P

2
(4.226)

Δ 1
2 , 3

2
= ω − ω 1

2 , 32
(4.227)

Ω =
μB

h̄
B (4.228)

m

e2
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⎡
⎣1 ·
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)
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2
±

(
4
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2
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2
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]
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)
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3

4ω

)
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3

ω
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⎦×
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2
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(
5
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)
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)−1
]
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[
3 2

3

4ω

]
×
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2
± Ω − i

2
γ 3

2

)−1
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(4.229)

βy =

√(
1 + 1

2

)2 − 1
4

3
(−1 −−2)

μBB

h̄ωso
=

√
2

3
Ω
ωso

(4.230)

(4.231)

Finally, the explicit and specific formula for the atomic polarizability taking into account fine structure
mixing valid for K and Rb is:

(mω
e2

)
α± =

1 ∓ P

2

[
1
3
± Ω
ωso

2
9

](
−Δ 1

2
±

(
4
3

)
Ω − i

2
γ 1

2

)−1

+
1 ∓ P

2

[
1
6
∓ Ω
ωso

2
9

](
−Δ 3

2
±

(
5
3

)
Ω − i

2
γ 3

2

)−1

+
1 ± P

4

(
−Δ 3

2
± Ω − i

2
γ 3

2

)−1

(4.232)

4.4 Effect of Buffer Gas Collisions

see romalis and walkup papers

4.5 Real Part of the Polarizability

Recall the following relations in SI units:

k± = Re ω
c
n± (4.233)

= Re ω
c

√
ε

ε0
(4.234)
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= Re ω
c

√
ε0 + [A]α±

ε0
(4.235)

= Re ω
c

√
1 +

[A]α±
ε0

(4.236)

� Re ω
c

(
1 +

[A]
2ε0

α±

)
(4.237)

where [A] is the density of the medium, which in our case is the alkali metal vapor. The forumla for the
Faraday Rotation angle is:

φ =
l

2
(kL − kR) (4.238)

=
l

2
(k− − k+) (4.239)

=
l

2

(
Re ω

c

(
1 +

[A]
2ε0

α−

)
−Re ω

c

(
1 +

[A]
2ε0

α+

))
(4.240)

=
lω[A]
4cε0

Re (α− − α+) (4.241)

(4.242)

A useful small field expansion, lowest order in Ω for the real part:

Re

(
−Δ ± gΩ +

i

2
γ

)−1

=
−Δ ± gΩ

(−Δ ± gΩ)2 + γ2

4

(4.243)

= (−Δ ± gΩ)
[
Δ2 + g2Ω2 ∓ 2gΔΩ +

γ2

4

]−1

(4.244)

=

(
−Δ ± gΩ

Δ2 + γ2

4

)[
1 +

g2Ω2 ∓ 2gΔΩ

Δ2 + γ2

4

]−1

(4.245)

�
(
−Δ ± gΩ

Δ2 + γ2

4

)[
1 − g2Ω2 ∓ 2gΔΩ

Δ2 + γ2

4

]
(4.246)

�
−Δ ± gΩ ∓ 2Δ2gΩ

Δ2+ γ2
4

Δ2 + γ2

4

(4.247)

�
−Δ ± gΩ

(
1 − 2Δ2

Δ2+ γ2
4

)
Δ2 + γ2

4

(4.248)

�
−Δ ∓ gΩ

(
Δ2− γ2

4

Δ2+ γ2
4

)
Δ2 + γ2

4

(4.249)

�
− 1

Δ ∓ g Ω
Δ2

(
1− γ2

4Δ2

1+ γ2

4Δ2

)
1 + γ2

4Δ2

(4.250)
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Putting this in:
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎟⎟⎟⎠

1 +
γ2

1
2

4Δ2
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(4.251)
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Note the use of the relation ωso = Δ 1
2
−Δ 3

2
. Only terms to first order in field (Ω) have been kept. The fine

structure mixing plays asignificant role in the rotation due to the field, but a very small role (2nd order in
field) in the rotation due to the polarization. Putting this into the angle formula, we get:
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Note that the ω’s cancel. This is an approximation as noted before. The rotation angle can be written as a
sum of the parts due to the polarization and the field:

φ = φP + φB (4.258)
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)
(4.261)
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1
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2
PB (4.262)

If the detuning is large (Δ � γ), then the rotation angle formulas can be simplified:

φP = l[A]PA
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4.6 Imaginary Part of the Polarizability

4.7 stuff

4.8 Description

The rotation of the plane of vibration of linearly polarized light in a medium within an applied magnetic field
is called the Faraday effect. It is caused by the circular birefringence exhibited by the medium due to the
applied field. Circular birefringence is the property of having two different indices of refraction for the two
orthogonal states of circular polarization. Therefore, the speed at which the two states of circular polarization
travel through the medium is different. This can be explained qualitatively by imagining the photons
undergoing a series of absorbtions and subsequent reemissions by the atoms in the medium. The process
of absorption and reemmission is called a virtual transition. It is analogous to one-loop diagrams within
propagators in QFT. Applying Fermi’s Golden Rule again, the rate of virtual transitions is proportional
to the probability of virtual transition and the population of initial state. Differences in either the virtual
transition probabilities or populations among the possible initial states of the atoms in the medium will
give different virtual transition rates. The Zeeman shift resulting from a magnetic field changes the virtual
transition probabilities. A non-zero polarization reflects a difference in initial state populations. The speed
of a photon in a medium is inversly proportional to the rate at which it undergoes virtual transtions in that
medium. In effect, the virtual transitions can be thought of as “slowing” down the photons. Differences in
speed of propagation result is a relative phase shift between the components of circularly polarized light that
make up the linearly polarized probe light. Therefore, polarized alkali metal vapor in a magnetic field will
rotate the plane of vibration of a linearly polarized probe beam by an angle that is proportional to alkali
metal vapor density, alkali metal vapor polarization, and the magnitude of the applied magnetic field.

4.9 General Formula for Rotation Angle

A linearly polarized probe beam can written as

|ψ (z, t)〉 = |P〉 ei(kz−ωt) (4.265)

This can be rewritten in the circular polarization basis:

|ψ (z, t)〉 =
(|R〉 eikRz + |L〉 eikLz

) e−iωt

√
2

(4.266)

66



where the wavenumber k is explicitly dependant on the circular polarization, but the angular frequency ω
is not. Outside the medium k = kR = kL but inside the medium kR �= kL. At z = t = 0, it has horizontal
linear polarization and it is just entering the birefringent medium of length l. After leaving the medium,
z = l + z′ and the explicit dependance of k on the circular polarization is removed once again:

|ψ (z′, t)〉 =
(|R〉 eikRl + |L〉 eikLl

) ei(kz′−ωt)
√

2
(4.267)

Pulling out a factor of ei(kR+kL) l
2

|ψ〉 = ei((kR+kL) l
2+kz′−ωt)

[
ei(kR−kL) l

2 |R〉 + ei(−kR+kL) l
2 |L〉√

2

]
(4.268)

Making the substitution

φ =
l

2
(kL − kR) (4.269)

and using eiφ = cos(φ) + i sin(φ), we get:

|ψ〉 = ei((kR+kL) l
2+kz′−ωt)

[
cos(φ)

( |R〉 + |L〉√
2

)
+ sin(φ)

( |R〉 − |L〉√
2i

)]
(4.270)

In the linear polarization basis, this is simply:

|ψ〉 = ei((kR+kL) l
2 +kz′−ωt) [cos(φ) |P〉 + sin(φ) |S〉] (4.271)

Therefore φ is the Faraday rotation angle and it is defined by eqn. (4.269). Note that there is a relative
phase shift between the two components circular polarization. There is no relative phase shift between the
two components of linear polarization. The rotation angle is commonly observed by measuring the difference
in intensities of the two components of a “probe” beam:

IP ∝ |〈P | ψ〉|2 = cos2(φ) (4.272)

IS ∝ |〈S | ψ〉|2 = sin2(φ) (4.273)
IP − IS ∝ cos2(φ) − sin2(φ) = cos(2φ) (4.274)

This implies that:

1. the electric field polarization vector rotates by an angle of φ due to the atomic vapor

2. the observable quantity is 2φ from the reference axis

3. faraday rotation (φ) can be cancelled by a half waveplate with an angle of −φ/2 between the its axis
and the reference axis
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Chapter 5

Interaction with a Weak RF Field

5.1 Description

5.1.1 Transition Rate

Transitions between adjacent hyperfine levels satisfy ΔmF = ±1 & ΔF = 0 and occur between states of
the same parity. The most probable way to induce these particular transitions is via a magnetic dipole
interaction with an oscillating magnetic field of the appropriate frequency. Therefore we use a set of coils to
produce a weak (a few milligauss) transverse field �Brf to probe the various EPR transitions. The lineshape
of each transition is proportional to the difference of the absorption and stimulated emission rates between
the two levels. The transition probability rate for either process is given by Fermi’s Golden Rule (Fermi, E.
Notes On Quantum Mechanics, Chicago: University of Chicago Press, 1995. section 23, page 2, equation
13):

dΓ±
dE

=
2π
h̄

∣∣∣∣
〈
mF − 1

2
± 1

2

∣∣∣∣ Ŵ
∣∣∣∣mF − 1

2
∓ 1

2

〉∣∣∣∣2 dρ±dE (5.1)

where Ŵ is the operator of the pertubration inducing the transition and the upper (lower) sign refers to
absorption (stimulated emission). dρ±

dE is the density of available states near the transition energy as a
function of energy or, alternatively, the fractional probability of transition near the transition frequency.
The modulus squared matrix element is identical for both absorption and stimulated emission, which is a
manifestation of the principle of detailed balancing:∣∣∣〈mF | Ŵ |mF − 1〉

∣∣∣2 =
∣∣∣〈mF − 1| Ŵ |mF 〉

∣∣∣2 (5.2)

The width of the lineshape is inversely proportional to the lifetimes of the initial and final states and
consequently the lineshape is ideally a lorentzian. For a vapor of alkali metal (“pure” or “hybrid”), the
process that domintates lifetime of the each hyperfine level is spin-exchange between (alike or unalike) alkali
metal atoms. Magnetic field inhomogenities and RF power can broaden the lineshape. However, the area
under the peak is a very robust quantity because it is conserved and therefore should not depend on the
details of the lineshape. The integral of the lineshape over frequency (or equivalently transition energy) is:

Γ =
∫ (

dΓ+

dE
− dΓ−

dE

)
dE (5.3)

=
2π
h̄

∣∣∣〈mF − 1| Ŵ |mF 〉
∣∣∣2 ∫ (

dρ+

dE
− dρ−

dE

)
dE (5.4)

Therefore the area is the net transition probability rate:

Γ =
2π
h̄

∣∣∣〈mF − 1| Ŵ |mF 〉
∣∣∣2 [ρ+ − ρ−] (5.5)

where ρ± is relative population of the state that is absorbing (emitting). First we will derive the the matrix
element in Γ and then we will discuss the relative populations ρ±.
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5.1.2 Transition Matrix Element

The main field B defines the z-axis. In order to probe ΔmF ± 1 transitions, a small set of coils creates an
RF field in a direction transverse to the main B-field. In our lab, the RF field produced at the center of our
cell by a 1.3 cm radius, 20 turn coil with a resistance of 3.9 Ω & an inductance of 0.5 μH driven at 16 VPP
at a frequency of about 7 MHz is on order of hundreds of microgauss to a few milligauss. Therefore, we can
treat the RF field �Brf as a time dependant pertubration to our original hamiltonian:

HEPR = H + W (5.6)

W = − �μI · �Brf − �μJ · �Brf (5.7)

We’ll choose the rf-field to be in the x̂ direction. After expressing the angular momentum operators as
ladder operators

(
Ĵx = 1

2

(
Ĵ+ + Ĵ−

))
and treating only the case of stimulated emission (mF → mF − 1),

the matrix element of interest becomes:

Wfi =
h̄

2
〈mF − 1|ωI Î− + ωJ Ĵ− |mF 〉 (5.8)

=
h̄

2
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=
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2
〈f |ωI F̂− + (ωJ − ωI) Ĵ− |i〉 (5.10)

ωI = −gIμNBRF

h̄
(5.11)

ωJ = −gSμBBRF

h̄
(5.12)

To start with, let’s calculate the matrix element of F̂−:〈
F̂−

〉
=

〈
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F − 1
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F
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]
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= f±a1 (mF ) a1 (mF − 1) + f∓a2 (mF ) a2 (mF − 1) (5.16)
= f±a1fa1i + f∓a2fa2i (5.17)
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Now let’s calculate the matrix element of Ĵ−:〈
Ĵ−
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= [a2fb2f − a1fb1f ] × [a1ib2i + a2ib1i] (5.24)

Note the following relations:
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+mF (mF − 1) − 2mF

(
I + 1

2

)
2I + 1

=
g+

2I + 1
(5.28)

g± =

√(
I +

1
2

)(
I +

1
2
± 1

)
+mF (mF − 1) ∓ 2mF

(
I +

1
2

)
(5.29)

Going back to
〈
Ĵ−

〉±
:

〈
Ĵ−

〉+

= [a1fb2f + a2fb1f ] × [a1ib1i − a2ib2i] (5.30)

= a1fa1i
f+

2I + 1
+ a2fa1i

g−
2I + 1

− a1fa2i
g+

2I + 1
− a2fa2i

f−
2I + 1

(5.31)〈
Ĵ−

〉−
= [a2fb2f − a1fb1f ] × [a1ib2i + a2ib1i] (5.32)

= a2fa1i
g+

2I + 1
− a1fa1i

f−
2I + 1

+ a2fa2i
f+

2I + 1
− a1fa2i

g−
2I + 1

(5.33)〈
Ĵ−

〉±
= ±a1fa1i

f±
2I + 1

+ a2fa1i
g∓

2I + 1
− a1fa2i

g±
2I + 1

∓ a2fa2i
f∓

2I + 1
(5.34)

Putting this altoghether,

Wfi =
h̄

2
ωI (f±a1fa1i + f∓a2fa2i) +

h̄

2
(ωJ − ωI)

×
(
±a1fa1i

f±
2I + 1

+ a2fa1i
g∓

2I + 1
− a1fa2i

g±
2I + 1

∓ a2fa2i
f∓

2I + 1

)
(5.35)

=
h̄

2

(
2IωI + (1 ∓ 1)ωI ± ωJ

2I + 1

)
f±a1fa1i +

h̄

2

(
2IωI + (1 ± 1)ωI ∓ ωJ

2I + 1

)

×f∓a2fa2i +
h̄

2

(
ωJ − ωI

2I + 1

)
(g∓a2fa1i − g±a1fa2i) (5.36)
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Using the small field approximations from before:

a1 = 1 − β2

2
x2 (5.37)

a2 = −βx+ 2αβx2 (5.38)

We’re interested in the mod square of the matrix element to first order in x:

|Wfi|2 � h̄2

4

(
2IωI + (1 ∓ 1)ωI ± ωJ

2I + 1

)2

f2
± − h̄2

4

(
2IωI + (1 ∓ 1)ωI ± ωJ

2I + 1

)

×
(
ωJ − ωI

2I + 1

)
f± (g∓βf − g±βi)x+ O(x2) (5.39)

5.1.3 Area Under Curve

This gives the relative population of the
∣∣mF − 1

2 ∓ 1
2

〉
state:

ρ± =
eβ(mF − 1

2∓ 1
2 )

ZF
(5.40)

from which the relative population difference is easily obtained:

ρ+ − ρ− =
eβ(mF −1)

ZF
− eβmF

ZF
=
eβmF

ZF

(
e−β − 1

)
(5.41)

Putting together all of these results, we get

|Γ| =
2π
h̄

|Wfi|2 eβmF

(
1 − e−β

ZF

)
(5.42)

To zeroth order in x, noting ωJ � ωI , and gS � −2.0, the area under the curve for a particular transition is

AmF � A0

(
2π
h̄

)[
h̄2

4

(
ωJ

2I + 1

)2

f2
±

]
eβmF

(
1 − e−β

ZF

)
+ O(x) (5.43)

� A0
2π
h̄

(
BRF

2I + 1

)2

[F (F + 1) −mF (mF − 1)] eβmF (5.44)

where A is a common factor for all transitions. Note that this β is the spin temperature and not the β
defined in eqn. (1.201).
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Chapter 6

Experimental Applications

All this will be a part of version 2.0 which is underway!

6.1 General Considerations to Measure Faraday Rotation

The effect of the atomic interaction on the light is expressed by the complex index of refraction through
the wave vector �k. The direction of �k is always in the direction that the light is propagating. On the other
hand, the magnitude of �k depends on the details of the atomic system and the polarization vector of the
light. Therefore, it is most natural to represent the polarization vector of the light in the atomic coordinate
system. For an alkali atom in a magnetic field, this happens to be the irreducible spherical vector basis.
We’ll start with a arbitrarily polarized plane wave:

�E = |E〉 ei
k·
r−iωt (6.1)

|E〉 = E0e
iφp

[(√
1 − P

e+iθ

2
+

√
1 + P

e−iθ

2

)
|P〉 +

(√
1 − P

e+iθ

2i
−√

1 + P
e−iθ

2i

)
|S〉

]
(6.2)

Going through a photoelastic modulator:

|E〉 = E0e
iφp

[(√
1 − P

e+iθ+

2
+
√

1 + P
e−iθ−

2

)
|P〉 +

(√
1 − P

e+iθ−

2i
−√

1 + P
e−iθ+

2i

)
|S〉

]
(6.3)

θ± = θ ± β(t)
2

(6.4)

Projecting onto the atomic coordinate system with equations (3.45) and (3.46) gives in the atomic basis:

|E〉0 = −E0

2
eiφp sin(Θ)

[√
1 − Pe+iθ+ +

√
1 + Pe−iθ−

]
(6.5)

|E〉± = +
E0

2
√

2
ei(φp∓Φ)

[{
e+iθ− ∓ e+iθ+ cos (Θ)

}√
1 − P − {

e−iθ+ ± e−iθ− cos (Θ)
}√

1 + P
]

(6.6)

Going through the atomic vapor, each polarization component q of the light propagates with wave vector
�kq:

�E =
∑

q

|E〉q ε̂qe
i(
kq·
r−ωt) (6.7)

After traversing a distance of l in the atomic vapor and reentering a uniform and isotropic medium with
wave vector �k, we get:

�E = ei(
k·
r−ωt) ∑
q

|E〉q ε̂qe
ikq l (6.8)
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The time averaged intensity of the light is:

I =
√
ε

μ

�E∗ · �E
2

=
√
ε

μ

∑
q

〈E | E〉q
2

ei(kq−k∗
q )l =

√
ε

μ

∑
q

〈E | E〉q
2

e−2l
kq (6.9)

where the magnitudes of each component are:

〈E | E〉0
E2

0

=
sin2(Θ)

2

[
1 +

√
1 − P 2 cos (2θ)

]
(6.10)

〈E | E〉±
E2

0

=
1 + cos2 (Θ)

4
± P

2
cos (Θ) cos (β) −

√
1 − P 2

4
[
sin2 (Θ) cos (2θ) ± 2 cos (Θ) sin (2θ) sin (β)

]
(6.11)

Using these above equations, the total intensity of light leaving the atomic vapor can be written as sum of
three parts:

I =
√
ε

μ

E2
0

2
(AΣ +AΔ +Aβ) (6.12)

AΣ =
1
4
[
e−2l
k+ + e−2l
k− + 2e−2l
k0

]
(6.13)

AΔ =

(
cos2(Θ) −√

1 − P 2 sin2(Θ) cos(2θ)
4

)[
e−2l
k+ + e−2l
k− − 2e−2l
k0

]
(6.14)

Aβ =
[
P cos(β) −

√
1 − P 2 sin(β) sin(2θ)

]
cos(Θ)e−l
(k−+k+) sinh [l� (k− − k+)] (6.15)

To get each component in the light coordinate system after leaving the atomic vapor, we project back using:

ε̂0 = − sin(Θ) |P〉 + cos(Θ) |Z〉 (6.16)

ε̂± = ∓exp (±iΦ)√
2

[cos(Θ) |P〉 ± i |S〉 + sin(Θ) |Z〉] (6.17)

Note that there is no component of polarization along the direction of propagation of the light, so we’ll just
ignore the |Z〉 terms. The effect of the atomic vapor can be written in matrix form in the linear polarization
basis in the light coordinate system:

|E〉aft = M̂ |E〉bef (6.18)

M̂ = ei(k++k−) l
2

⎡
⎣ cos

(
k+−k−

2 l
)

cos2(Θ) + e
i
(

k0− k++k−
2

)
l sin2(Θ) sin

(
k+−k−

2 l
)

cos(Θ)

− sin
(

k+−k−
2 l

)
cos(Θ) cos

(
k+−k−

2 l
)

⎤
⎦(6.19)

|E〉bef =
E0e

iφp

2

[ √
1 − Pe+iθ+ +

√
1 + Pe−iθ−

−i (√1 − Pe+iθ− −√
1 + Pe−iθ+

) ]
(6.20)

We’ll split this matrix into the following two parts:

M̂ = ei(k++k−) l
2

[
M̂0 + 2 sin2

(
Θ
2

)
M̂1

]
(6.21)

M̂0 =

⎡
⎣ + cos

(
k+−k−

2 l
)

+ sin
(

k+−k−
2 l

)
− sin

(
k+−k−

2 l
)

+ cos
(

k+−k−
2 l

)
⎤
⎦ (6.22)

M̂1 =

⎡
⎢⎣ 2

[
e

i
(
k0− k++k−

2

)
l − cos

(
k+−k−

2 l
)]

cos2
(

Θ
2

) − sin
(

k+−k−
2 l

)
+ sin

(
k+−k−

2 l
)

0

⎤
⎥⎦ (6.23)
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such that M̂1 drops away when Θ = 0. Now we’ll send the light through a half waveplate whose axis is at
an angle φh:

Ŵ 1
2
M̂0 = i

⎡
⎣ + cos

(
k+−k−

2 l + 2φh

)
+ sin

(
k+−k−

2 l + 2φh

)
+ sin

(
k+−k−

2 l + 2φh

)
− cos

(
k+−k−

2 l+ 2φh

)
⎤
⎦ (6.24)

Ŵ 1
2
M̂1 = i

⎡
⎢⎢⎣ 2

[
e

i
(
k0− k++k−

2

)
l − cos

(
k+−k−

2 l
)]

cos2
(

Θ
2

)
cos(2φh) + sin

(
k+−k−

2 l
)

sin(2φh) − sin
(

k+−k−
2 l

)
cos(2φh)

2
[
e

i
(
k0− k++k−

2

)
l − cos

(
k+−k−

2 l
)]

cos2
(

Θ
2

)
sin(2φh) − sin

(
k+−k−

2 l
)

cos(2φh) − sin
(

k+−k−
2 l

)
sin(2φh)

⎤
⎥⎥⎦

(6.25)

The final polarization vector can be written as a sum of two parts:

|E〉final = iei(k++k−) l
2

[
|E〉ideal + 2 sin2

(
Θ
2

)
M̂skew |E〉bef

]
(6.26)

|E〉ideal =
E0e

iφp

2

⎡
⎣ √

1 − Pe+iθ
(
cos(ψ)e+i β

2 − i sin(ψ)e−i β
2

)
+

√
1 + Pe−iθ

(
cos(ψ)e+i β

2 + i sin(ψ)e−i β
2

)
i
√

1 − Pe+iθ
(
cos(ψ)e−i β

2 − i sin(ψ)e+i β
2

)
− i

√
1 + Pe−iθ

(
cos(ψ)e−i β

2 + i sin(ψ)e+i β
2

)
⎤
⎦ (6.27)

ψ = (k+ − k−)
l

2
+ 2φh (6.28)

M̂skew =

⎡
⎢⎢⎣ 2

[
e

i
(
k0− k++k−

2

)
l − cos

(
k+−k−

2 l
)]

cos2
(

Θ
2

)
cos(2φh) + sin

(
k+−k−

2 l
)

sin(2φh) − sin
(

k+−k−
2 l

)
cos(2φh)

2
[
e

i
(
k0− k++k−

2

)
l − cos

(
k+−k−

2 l
)]

cos2
(

Θ
2

)
sin(2φh) − sin

(
k+−k−

2 l
)

cos(2φh) − sin
(

k+−k−
2 l

)
sin(2φh)

⎤
⎥⎥⎦

(6.29)

Note the following possible conditions:

1. If there is no atomic vapor, set l = 0.

2. If there is no PEM , set β = 0.

3. If there is no skewness or angle between the quantization axis of the atomic vapor and the direction
of propagation of the light, set Θ = 0.

4. A small skew angle effects the final polarization angle at second order sin2(Θ/2) ≈ Θ2/4.

Noting that ψ is complex, the intensities of the two components for the ”ideal” case (skew angle is zero) are:

ζ =
√
ε

μ

E2
0

4
e−l
{k++k−} (6.30)

IP
ζ

= | cos(ψ)|2 + | sin(ψ)|2 + iP
(
cos(ψ∗) sin(ψ)e−iβ − cos(ψ) sin(ψ∗)e+iβ

)
+

√
1 − P 2 ×

�{
e+2iθ

[| cos(ψ)|2 − | sin(ψ)|2 − i cos(ψ∗) sin(ψ)e−iβ − i cos(ψ) sin(ψ∗)e+iβ
]}

(6.31)
IS
ζ

= | cos(ψ)|2 + | sin(ψ)|2 + iP
(
cos(ψ∗) sin(ψ)e+iβ − cos(ψ) sin(ψ∗)e−iβ

)−√
1 − P 2 ×

�{
e+2iθ

[| cos(ψ)|2 − | sin(ψ)|2 − i cos(ψ∗) sin(ψ)e+iβ − i cos(ψ) sin(ψ∗)e−iβ
]}

(6.32)

Using the following relations:

| cos(ψ)|2 = cos(ψ) cos(ψ∗) =
1
2

[cosh(2�ψ) + cos(2�ψ)] (6.33)

| sin(ψ)|2 = sin(ψ) sin(ψ∗) =
1
2

[cosh(2�ψ) − cos(2�ψ)] (6.34)
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sin(ψ) cos(ψ∗) =
1
2

[+i sinh(2�ψ) + sin(2�ψ)] (6.35)

sin(ψ∗) cos(ψ) =
1
2

[−i sinh(2�ψ) + sin(2�ψ)] (6.36)

finally gives:

IP,S =
Iσ ± Iδ

2
(6.37)

Iσ = 2ζ
[
cosh(2�ψ) + sinh(2�ψ)

(√
1 − P 2 sin(2θ) sin(β) − cos(β)

)]
(6.38)

Iδ = 2ζ
[
P sin(β) sin(2�ψ) +

√
1 − P 2 (cos(2θ) cos(2�ψ) + sin(2θ) sin(2�ψ) cos(β))

]
(6.39)

Using the following expansions for the β terms:

β(t) = β0 cos (Ωmodt) (6.40)
sin (β0 cos (Ωmodt)) = 2J1 (β0) cos (Ωmodt) − · · · (6.41)
cos (β0 cos (Ωmodt)) = J0 (β0) − 2J2 (β0) cos (2Ωmodt) + · · · (6.42)

we can extract the DC, the RMS AC1, and the RMS AC2 components of the sum (σ) and difference (δ)
signals:

Iσ(DC) = 2ζ [cosh(2�ψ) − J0(β0) sinh(2�ψ)] (6.43)

Iσ(AC1) = 2ζ
√

2J1 (β0) sinh(2�ψ)
√

1 − P 2 sin(2θ) (6.44)

Iσ(AC2) = 2ζ
√

2J2 (β0) sinh(2�ψ) (6.45)

Iδ(DC) = 2ζ
√

1 − P 2 [cos(2θ) cos(2�ψ) + J0(β0) sin(2θ) sin(2�ψ)] (6.46)

Iδ(AC1) = 2ζ
√

2J1(β0)P sin(2�ψ) (6.47)

Iδ(AC2) = 2ζ
√

2J2(β0)
√

1 − P 2 sin(2θ) sin(2�ψ) (6.48)

2ζ =
√
ε

μ

E2
0

2
e−l
{k++k−} (6.49)

ψ = (k+ − k−)
l

2
+ 2φh (6.50)

where:

1. Jn is a Bessel function of the first kind or order n

2. β0 = 2πβset

(
λset

λlight

)
is the PEM retardation

3. φh is the angle of the half waveplate axis with respect to the PEM axis

4. P is the degree of circular polarization of the light before the PEM

5. θ is the angle of linear polarization component of the light with respect to the PEM axis before the
PEM

6. � and � refer to the real and imaginary parts of a complex number

For the case where there is no atomic vapor (l = 0):

Iσ(DC) =
√
ε

μ

E2
0

2
(6.51)

Iσ(AC1) = 0 (6.52)
Iσ(AC2) = 0 (6.53)

Iδ(DC) = Iσ(DC)
√

1 − P 2 [cos(2θ) cos(4φh) + J0(β0) sin(2θ) sin(4φh)] (6.54)

Iδ(AC1) = Iσ(DC)
√

2J1(β0)P sin(4φh) (6.55)

Iδ(AC2) = Iσ(DC)
√

2J2(β0)
√

1 − P 2 sin(2θ) sin(4φh) (6.56)
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6.2 Measuring Alkali Number Density with Alkali Polarization
= 0

6.3 Measuring Alkali Number Density with Alkali Polarization

�= 0

6.4 Measuring 3He Density

6.5 Measuring 3He Polarization using EPR
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Appendix A

Physical Constants and Alkali Data

These are tables of physical constants and data relevant to various alkali metals. All units are in SI unless
otherwise noted. Sources are the following:

• CODATA Mohr, Peter J. and Barry N. Taylor. Rev. Mod. Phys, 77, p1 (2005).

• NISTa http://physics.nist.gov/cuu/Constants/index.html

• NISTb http://physics.nist.gov/PhysRefData/ASD/index.html

• NISTc http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html

• NISTd http://www.physics.nist.gov/PhysRefData/Elements/cover.html

• NISTe http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm

• RS85 Radzig, A.A. and B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions. Berlin:
Springer-Verlag, 1985.

• AIV77 Arimondo, E., M. Inguscio, and P. Violino. Rev. Mod. Phys. 49, pp31-75 (1977).

For each value, only the most significant digits are kept. The uncertainty on each value is in general ±9 on
the last digit, but is usually ±2. Values which are referenced to an equation denoted by () are calculated
with other values found in the tables. The fields for which the Zeeman interaction becomes on order of the
fine and hyperfine interactions are calculated only to three significant digits for illustrative purposes. Some
useful relationships:

α =
e2

4πε0h̄c
=
mc

h̄
re (A.1)

re =
e2

4πε0mc2
=

h̄

mc
α (A.2)
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Symbol Value Units Description

c 299 792 458 m · s−1 definition of the speed of light
ε0 8.854 187 817 × 10−12 C2 · N−1 · m−2 permittivity of free space
μ0 4π × 10−7 N · A−2 permeability of free space

e 1.602 176 5 × 10−19 C electron charge magnitude
m 9.109 383 × 10−31 kg electron mass
gS −2.002 319 304 372 unitless electron g-factor
re 2.817 940 325 × 10−15 m classical electron radius

μB 9.274 000 95 × 10−24 J · T−1 Bohr magneton
μN 5.050 783 4 × 10−27 J · T−1 Nuclear magneton
h 6.626 069 × 10−34 J · s Planck constant
α−1 137.035 999 unitless fine structure constant
amu 1.660 538 9 × 10−27 kg 12·(atomic mass unit) = mass 12C

Table A.1: Fundamental Physical Constants [CODATA 2002]. These values are found at [NISTa].

Element D1 D2
λ(nm, air) τ(ns) f τ(ns) f λ(nm, air) τ(ns) f τ(ns) f

Lithium 670.791 26.9 0.251 27.3 0.247 670.776 26.9 0.502 27.9 0.494
Sodium 589.592 4 16.2 0.322 16.4 0.318 588.995 0 16.1 0.647 16.3 0.637
Potassium 769.896 26.2 0.340 27 0.35 766.490 25.8 0.682 27 0.70
Rubidium 794.760 3 27.7 0.342 28.5 0.32 780.026 8 26.2 0.695 26.5 0.67
Cesium 894.347 34.8 0.344 31 0.39 852.113 30.53 0.7131 31 0.81

Reference NISTb RS85 NISTb RS85

Table A.2: Alkali atom D1 and D2 transition wavelengths (λ), lifetimes (τ), and oscillator strengths (f).

Element Ground S1/2 P1/2 P3/2 νso(GHz) Field for y = 1
State gJ/gS gJ gJ (Tesla)

Lithium 2 1.000 003 4 −0.667 −1.335 9.994 18 0.712
Sodium 3 1.000 000 9 −0.665 8 −1.334 2 515.730 36.7
Potassium 4 1.000 018 44 1 730.32 123
Rubidium 5 1.000 005 9 7 124.94 508
Cesium 6 1.000 104 474 −0.665 90 −1.334 0 16 614.2 1180

Theory 1.000 000 000 −0.665 894 −1.334 106
(if gS = −2) −2/3 −4/3

Reference NISTc AIV77 (1.57) (1.59)

Table A.3: Alkali atom ground state and first excited states fine structure..
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Isotope Mass Natural Nuclear Magnetic g-factor
(amu) Abundance Spin, I Moment (μN ) gI(μN )

Lithium 6.941
6Li 6.015 122 3 0.075 9 1 +0.822 056 +0.822 056
7Li 7.016 004 0 0.924 1 3/2 +3.256 44 +2.170 96

Sodium 22.989 770
23Na 22.989 769 7 1.0 3/2 +2.217 52 +1.478 35

Potassium 39.098 3
39K 38.963 706 9 0.932 58 3/2 +0.391 46 +0.260 97
40K 39.963 998 7 0.000 117 4 −1.298 −0.324 5
41K 40.961 826 0 0.067 30 3/2 +0.214 87 +0.143 25

Rubidium 85.467 8
85Rb 84.911 789 0.721 7 5/2 +1.353 02 +0.541 208
87Rb 86.909 184 0.278 3 3/2 +2.751 2 +1.834 1

Cesium 132.905 45
133Cs 132.905 447 1.0 7/2 +2.579 +0.736 9

Reference NISTd NISTe (1.5)

Table A.4: Alkali atom isotopic and nuclear data.

Iso. S1/2 P1/2 P3/2

A νhfs x = 1 A νhfs x = 1 A B
(MHz) (MHz) (gauss) (MHz) (MHz) (gauss) (MHz) (MHz)

6Li 152.136 841 228.205 261 81.4 17.38 26.06 27.9 −1.155 −0.1
7Li 401.752 043 3 803.504 086 6 287 45.92 91.83 98.4 −3.055 −0.22

23Na 885.813 064 4 1 771.626 128 632 94.3 188.6 202 18.69 2.9

39K 230.859 860 1 461.719 720 2 165 28.85 57.7 61.8 6.06 2.8
40K −285.731 −1 142.92 −405 −7.59 −3.5
41K 127.006 935 2 254.013 870 4 90.6 3.40 3.3

85Rb 1 011.910 813 3 035.732 439 1 080 120.72 362.16 388 25.01 25.88
87Rb 3 417.341 306 4 6 834.682 612 8 2 440 406.2 812.4 870 84.845 12.52

133Cs 2 298.157 942 5 9 192.631 770 3 280 291.9 1 167 1 250 50.34 −0.4

Ref. AIV77 (1.207) (1.209) ” ” ” AIV77

Table A.5: Alkali atom ground State and first excited states hyperfine structure.
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Appendix B

Irreducible Spherical Vector Basis

In the rectangular basis, a vector is decomposed in the following way:

�r =
3∑

q=1

rq ε̂q (B.1)

where the components rq and unit vectors εq are real and have the following interpretations:

r∗q = rq ↔ ε̂∗q = ε̂q (B.2)
r1 = r∗1 = x ↔ ε̂1 = ε̂∗1 = x̂ (B.3)
r2 = r∗2 = y ↔ ε̂2 = ε̂∗2 = ŷ (B.4)
r3 = r∗3 = z ↔ ε̂3 = ε̂∗3 = ẑ (B.5)

Orthogonality of the unit vectors is defined the following way:

ε̂p · ε̂q = δq
p (B.6)

which immediately implies the dot product between two vectors and the modulus square of a vector:

�r · �s =
3∑

p,q=1

rpsqε̂p · ε̂q (B.7)

=
3∑

p,q=1

rpsqδ
q
p (B.8)

=
3∑

q=1

rqsq (B.9)

|�r|2 = �r∗�r (B.10)

=
3∑

q=1

r∗qrq (B.11)

= x2 + y2 + z2 (B.12)

The vector, all dot products, and the modulus squared are all real.
Alternatively, the same vector can be expanded in the spherical basis (Rose, M.E. Elementary Theory of

Angular Momentum. New York: John Wiley, 1957. page 105, equation (5.56)): In the rectangular basis, a
vector is decomposed in the following way:

�r =
+1∑

q=−1

(−1)qrq ε̂−q (B.13)
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where the components rq and unit vectors εq are in general complex and have the following interpretations:

r∗q = (−1)qr−q ↔ ε̂∗q = (−1)qε̂−q (B.14)

r−1 = −r∗+1 = +
(
x− iy√

2

)
↔ ε̂−1 = −ε̂∗+1 = +

(
x̂− iŷ√

2

)
(B.15)

r0 = r∗0 = z ↔ ε̂0 = ε̂∗0 = ẑ (B.16)

r+1 = −r∗−1 = −
(
x+ iy√

2

)
↔ ε̂+1 = −ε̂∗−1 = −

(
x̂+ iŷ√

2

)
(B.17)

Orthogonality of the unit vectors is defined the following way:

ε̂p · ε̂q = (−1)qδ−q
p (B.18)

ε̂∗p · ε̂q = δq
p (B.19)

which immediately implies the dot product between two vectors and the modulus square of a vector:

�r · �s =
3∑

p,q=1

(−1)p+qrpsq ε̂−p · ε̂−q (B.20)

=
3∑

p,q=1

(−1)p+q−qrpsqδ
q
−p (B.21)

=
3∑

q=1

(−1)qr−qsq (B.22)

|�r|2 = �r∗ · �r =
3∑

p,q=1

(−1)p+qr∗prq ε̂
∗
−p · ε̂−q (B.23)

=
3∑

p,q=1

(−1)p+qr∗prqδ
−q
−p (B.24)

=
3∑

p,q=1

(−1)2qr∗qrq (B.25)

=
3∑

p,q=1

(−1)qr−qrq (B.26)

= r20 − 2r−1r+1 (B.27)

Note that the irreducible spherical vector basis is just the irreducible spherical tensor basis of rank one.#check#comment
more on this at some point
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Appendix C

Expansion of Zero Field Eigenbasis

C.1 Clebsch-Gordon Coefficient Formulas

Adapted from equation (17.27) in [Wigner, Eugene, P. Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra. New York: Academic Press, 1959.] into equation 143(5) in [Condon, E. U.
and G.H. Shortley. The Theory of Atomic Spectra. London: CUP, 1967.]:

〈(J1, J2)m1,m2|J,m〉 =

√
(J + J1 − J2)! (J − J1 + J2)! (J1 + J2 − J)! (J +m)! (J −m)! (2J + 1)

(J + J1 + J2 + 1)! (J1 −m1)! (J1 +m1)! (J2 −m2)! (J2 +m2)!

×δ(m1+m2)
m

κ2∑
κ=κ1

(−1)κ+J2+m2 (J + J2 +m1 − κ)! (J1 −m1 + κ)!
(J − J1 + J2 − κ)! (J +m− κ)!κ! (κ+ J1 − J2 −m)!

(C.1)

κa = max [0, J2 − J1 +m] (C.2)
κb = min [J +m,J2 − J1 + J ] (C.3)
κ1 = min [κa, κb] (C.4)
κ2 = max [κa, κb] (C.5)

where κ is summed over all non-negative integers between κ1 and κ2. Note the usual rules:

〈(J1, J2)m1,m2|J,m〉 = (−1)J−J1−J2 〈(J2, J1)m2,m1|J,m〉 (C.6)
J1, J2, J ≥ 0 J = |J1 − J2| . . . (J1 + J2) (C.7)

m1 = −J1 . . .+J1 m2 = −J2 . . .+J2 m = m1 +m2 = −J . . .+J (C.8)

The following formulas for J = 1/2, 1 and J = 3/2 were derived by E.P. Wigner and F. Seitz and are
catalogued in CU in tables 13, 23,& 33.

C.1.1 For the case �J1 + �1
2〈(

J1,
1
2

)
,m1,±1

2
|J1 +

1
2
,m1 ± 1

2

〉
=

〈(
J − 1

2
,
1
2

)
,m∓ 1

2
,±1

2
|J,m

〉

=

√
J1 ±m+ 1

2

[J1]
=

√
J1 ±m1 + 1

[J1]
=

√
J ±m

2J
(C.9)〈(

J1,
1
2

)
,m1,±1

2
|J1 − 1

2
,m1 ± 1

2

〉
=

〈(
J +

1
2
,
1
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ∓
√
J1 ∓m+ 1

2

[J1]
= ∓

√
J1 ∓m1

[J1]
= ∓

√
J ∓m+ 1
2(J + 1)

(C.10)
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C.1.2 For the case �J1 +�1

With m = m1 ± 1:

〈(J1, 1) ,m1,±1|J1 + 1,m1 ± 1〉 = 〈(J − 1, 1) ,m∓ 1,±1|J,m〉

=

√
(J1 ±m) (J1 ±m+ 1)

2[J1] (J1 + 1)
(C.11)

=

√
(J1 ±m1 + 1) (J1 ±m1 + 2)

2[J1] (J1 + 1)
(C.12)

=

√
(J ±m− 1) (J ±m)

2J(2J − 1)
(C.13)

〈(J1, 1) ,m1,±1|J1,m1 ± 1〉 = 〈(J, 1) ,m∓ 1,±1|J,m〉

= ∓
√

(J1 ±m) (J1 ∓m+ 1)
2J1 (J1 + 1)

(C.14)

= ∓
√

(J1 ±m1 + 1) (J1 ∓m1)
2J1 (J1 + 1)

(C.15)

= ∓
√

(J ±m) (J ∓m+ 1)
2J (J + 1)

(C.16)

〈(J1, 1) ,m1,±1|J1 − 1,m1 ± 1〉 = 〈(J + 1, 1) ,m∓ 1,±1|J,m〉

=

√
(J1 ∓m) (J1 ∓m+ 1)

2J1[J1]
(C.17)

=

√
(J1 ∓m1 − 1) (J1 ∓m1)

2J1[J1]
(C.18)

=

√
(J ∓m+ 1) (J ∓m+ 2)

2(J + 1)(2J + 3)
(C.19)

With m = m1:

〈(J1, 1) ,m1, 0|J1 ± 1,m1〉 = 〈(J ∓ 1, 1) ,m, 0|J,m〉

= ±
√(

J1 −m+ 1
2 ± 1

2

) (
J1 +m+ 1

2 ± 1
2

)
[J1]

(
J1 + 1

2 ± 1
2

) (C.20)

= ±
√(

J1 −m1 + 1
2 ± 1

2

) (
J1 +m1 + 1

2 ± 1
2

)
[J1]

(
J1 + 1

2 ± 1
2

) (C.21)

= ±
√(

J −m+ 1
2 ∓ 1

2

) (
J +m+ 1

2 ∓ 1
2

)
(2J + 1 ∓ 2)

(
J + 1

2 ∓ 1
2

) (C.22)

〈(J1, 1) ,m1, 0|J1,m1〉 = 〈(J, 1) ,m, 0|J,m〉
=

m1√
J1 (J1 + 1)

=
m√

J (J + 1)
(C.23)
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C.1.3 For the case �J1 + �3
2

With m = m1 ± 3
2 :

〈(
J1,

3
2

)
,m1,±3

2
|J1 +

3
2
,m1 ± 3

2

〉
=

〈(
J − 3

2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

=

√(
J1 ±m− 1

2

) (
J1 ±m+ 1

2

) (
J1 ±m+ 3

2

)
2[J1] (J1 + 1) (2J1 + 3)

(C.24)

=

√
(J1 ±m1 + 1) (J1 ±m1 + 2) (J1 ±m1 + 3)

2[J1] (J1 + 1) (2J1 + 3)
(C.25)

=

√
(J ±m− 2) (J ±m− 1) (J ±m)

4J (J − 1) (2J − 1)
(C.26)〈(

J1,
3
2

)
,m1,±3

2
|J1 +

1
2
,m1 ± 3

2

〉
=

〈(
J − 1

2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

= ∓
√

3
(
J1 ±m− 1

2

) (
J1 ±m+ 1

2

) (
J1 ∓m+ 3

2

)
2J1[J1] (2J1 + 3)

(C.27)

= ∓
√

3 (J1 ±m1 + 1) (J1 ±m1 + 2) (J1 ∓m1)
2J1[J1] (2J1 + 3)

(C.28)

= ∓
√

3 (J ±m− 1) (J ±m) (J ∓m+ 1)
4J (2J − 1) (J + 1)

(C.29)〈(
J1,

3
2

)
,m1,±3

2
|J1 − 1

2
,m1 ± 3

2

〉
=

〈(
J +

1
2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

=

√
3
(
J1 ±m− 1

2

) (
J1 ∓m+ 1

2

) (
J1 ∓m+ 3

2

)
2[J1] (J1 + 1) (2J1 − 1)

(C.30)

=

√
3 (J1 ±m1 + 1) (J1 ∓m1 − 1) (J1 ∓m1)

2[J1] (J1 + 1) (2J1 − 1)
(C.31)

=

√
3 (J ±m) (J ∓m+ 1) (J ∓m+ 2)

4J (J + 1) (2J + 3)
(C.32)〈(

J1,
3
2

)
,m1,±3

2
|J1 − 3

2
,m1 ± 3

2

〉
=

〈(
J +

3
2
,
3
2

)
,m∓ 3

2
,±3

2
|J,m

〉

= ∓
√(

J1 ∓m− 1
2

) (
J1 ∓m+ 1

2

) (
J1 ∓m+ 3

2

)
2J1[J1] (2J1 − 1)

(C.33)

= ∓
√

(J1 ∓m1 − 2) (J1 ∓m1 − 1) (J1 ∓m1)
2J1[J1] (2J1 − 1)

(C.34)

= ∓
√

(J ∓m+ 1) (J ∓m+ 2) (J ∓m+ 3)
4 (2J + 3) (J + 2) (J + 1)

(C.35)
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With m = m1 ± 1
2 :

〈(
J1,

3
2

)
,m1,±1

2
|J1 +

3
2
,m1 ± 1

2

〉
=

〈(
J − 3

2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

=

√
3
(
J1 ±m+ 1

2

) (
J1 +m+ 3

2

) (
J1 −m+ 3

2

)
2[J1] (J1 + 1) (2J1 + 3)

(C.36)

=

√
3 (J1 ±m1 + 1)

(
J1 +m1 + 3±1

2

) (
J1 −m1 + 3∓1

2

)
2[J1] (J1 + 1) (2J1 + 3)

(C.37)

=

√
3 (J ±m− 1) (J +m) (J −m)

4J (J − 1) (2J − 1)
(C.38)〈(

J1,
3
2

)
,m1,±1

2
|J1 +

1
2
,m1 ± 1

2

〉
=

〈(
J − 1

2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ∓
(
J1 ∓ 3m+

3
2

)√
J1 ±m+ 1

2

2J1[J1] (2J1 + 3)
(C.39)

= ∓ (J1 ∓ 3m1)

√
J1 ±m1 + 1

2J1[J1] (2J1 + 3)
(C.40)

= ∓ (J ∓ 3m+ 1)

√
J ±m

4J (2J − 1) (J + 1)
(C.41)〈(

J1,
3
2

)
,m1,±1

2
|J1 − 1

2
,m1 ± 1

2

〉
=

〈(
J +

1
2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= −
(
J1 ± 3m− 1

2

)√
J1 ∓m+ 1

2

2[J1] (J1 + 1) (2J1 − 1)
(C.42)

= − (J1 ± 3m1 + 1)

√
J1 ∓m1

2[J1] (J1 + 1) (2J1 − 1)
(C.43)

= − (J ± 3m)

√
J ∓m+ 1

4J (J + 1) (2J + 3)
(C.44)〈(

J1,
3
2

)
,m1,±1

2
|J1 − 3

2
,m1 ± 1

2

〉
=

〈(
J +

3
2
,
3
2

)
,m∓ 1

2
,±1

2
|J,m

〉

= ±
√

3
(
J1 +m− 1

2

) (
J1 −m− 1

2

) (
J1 ∓m+ 1

2

)
2J1[J1] (2J1 − 1)

(C.45)

= ±
√

3
(
J1 +m1 − 1∓1

2

) (
J1 −m1 − 1±1

2

)
(J1 ∓m1)

2J1[J1] (2J1 − 1)
(C.46)

= ±
√

3 (J +m+ 1) (J −m+ 1) (J ∓m+ 2)
4 (2J + 3) (J + 2) (J + 1)

(C.47)
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C.2 Without Nuclear Spin I = 0

∣∣∣∣S 1
2
,
1
2
,+

1
2

〉
=

∣∣∣∣+1
2

〉
S

(C.48)∣∣∣∣S 1
2
,
1
2
,−1

2

〉
=

∣∣∣∣−1
2

〉
S

(C.49)∣∣∣∣P 1
2
,
1
2
,+

1
2

〉
=

√
2
3
|+1〉L

∣∣∣∣−1
2

〉
S

−
√

1
3
|0〉L

∣∣∣∣+1
2

〉
S

(C.50)∣∣∣∣P 1
2
,
1
2
,−1

2

〉
=

√
1
3
|0〉L

∣∣∣∣−1
2

〉
S

−
√

2
3
|−1〉L

∣∣∣∣+1
2

〉
S

(C.51)∣∣∣∣P 3
2
,
3
2
,+

3
2

〉
= |+1〉L

∣∣∣∣+1
2

〉
S

(C.52)∣∣∣∣P 3
2
,
3
2
,+

1
2

〉
=

√
1
3
|+1〉L

∣∣∣∣−1
2

〉
S

+

√
2
3
|0〉L

∣∣∣∣+1
2

〉
S

(C.53)∣∣∣∣P 3
2
,
3
2
,−1

2

〉
=

√
2
3
|0〉L

∣∣∣∣−1
2

〉
S

+

√
1
3
|−1〉L

∣∣∣∣+1
2

〉
S

(C.54)∣∣∣∣P 3
2
,
3
2
,−3

2

〉
= |−1〉L

∣∣∣∣−1
2

〉
S

(C.55)
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