History of astronomy

- Ptolomy devised an Earth-centered model of the motion of planets that worked well
- Brahe made detailed measurements that showed deficiencies in the model
- Kepler discarded the previous assumptions and devised his three laws of planetary motion with the Sun at the center
- Newton unified the tree laws with his Universal Law of Gravity

Newton's Universal Law of Gravity:

$$
F=\frac{G m_{1} m_{2}}{r^{2}} ; G=6.673 E-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

WHY?

The Law of Gravity

What is the force of gravity on a 90 kg professor standing on the surface of the Earth?
$F=\frac{G m_{p} m_{e}}{r_{e}^{2}}=\frac{\left(6.673 E-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) 90 \mathrm{~kg} \times 5.974 E 24 \mathrm{~kg}}{(6.378 E 6 \mathrm{~m})^{2}}=882 \mathrm{~N}$
Note: We get the same answer if we ask what is the force a professor exerts on the Earth. That is Newton's third law.

- What is the acceleration caused by this force?

$$
F=m a \rightarrow a \equiv g=\frac{F}{m}=\frac{882 \mathrm{~N}}{90 \mathrm{~kg}}=9.795 \mathrm{~m} / \mathrm{s}^{2}
$$

- What would happen if the radius of the Earth were doubled, but the mass was the same?

$$
F_{2 r}=\frac{G m_{e} m_{p}}{\left(2 r_{e}\right)^{2}}=\frac{G m_{e} m_{p}}{4\left(r_{e}\right)^{2}}=\frac{1}{4} \times F_{r}
$$

More on Gravity

On the surface of the Earth:
$F=\frac{G m_{e} m}{r_{e}^{2}}=\left(\frac{G m_{e}}{r_{e}^{2}}\right) m=m a=m g$
$G=6.673 E-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g}-$ symbol for the acceleration of gravity $)$

All objects fall at the same rate

- $\mathrm{F}_{\text {Gravity }}=\mathrm{mg}$ (the mass and radius of Earth are in the g)
- Also $\mathrm{F}=\mathrm{ma}=\mathrm{mg}$ (Note: this is a vector equation, whatever direction F points, a points that way too!)
- Therefore, neglecting other forces

$$
\mathrm{g}=\mathrm{a}
$$

- More mass means more F, but more mass also means it is harder to accelerate. These two effects cancel.
- Why is the m in ma the same as the m in mg ?
- The stronger force means more acceleration when the planet is closer to the star
- A larger distance means less force and a longer time for the orbit
- Newton's law of gravity unified three laws in one.

U N IVERSITY

Newtonian View of the Universe

- Loss of free will
- French Scientist/Mathematician Pierre-Simon Laplace (1749-1827)
"An intelligence which at a given instant knew all the forces acting in nature and the positions of every object in the universe - if endowed with a brain sufficiently vast to make all the necessary calculations - could describe with a single formula the motions of the largest astronomical bodies and those of the lightest atoms. To such an intelligence, nothing would be uncertain; the future, like the past, would be an open book."
- Elliptical orbits

$$
F=\frac{G m_{1} m_{2}}{r^{2}} ; G=6.673 E-11 \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

Newton Explains Kepler’s Laws

- Force is the rate of change of momentum.
- Momentum is mass times velocity.
- Momentum is a vector. Often we write it as a "p".
- $\mathrm{p}=$ mass \cdot velocity
- Momentum is the modern analog to Galileo's idea of inertia.

Hint: Force is the rate of change of momentum.

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=\frac{\Delta \overrightarrow{\mathrm{p}}}{\Delta \mathrm{t}}=\frac{\overrightarrow{\mathrm{p}}_{2}-\overrightarrow{\mathrm{p}}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}} \\
& \text { magnitude of } \mathrm{F} \text { for motion in one dimension }=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}
\end{aligned}
$$

Note: A negative slope means the direction of the force is toward -x . Force is a vector, and direction matters.

Momentum Problem Picture

ISP209s8 Lecture 5
$\frac{\text { MICHIGAN STATE }}{\text { UN IVERS IT Y }}$
What is a force (continued)?

- These laws let us recognize a force, but what causes a force?
- The modern view is related to field theory.
- Forces are the result of an exchange of particles.
- To understand field theory, we have to talk about energy and quantum mechanics (later in the term).

Addition

ISP209s8 Lecture 5
$-17-$

Example of the use of vectors

How long to cross the river?

River	rime $=\frac{\text { distance across the river }}{\text { Rowing velocity }}$
\longrightarrowThe rowing speed is the magnitude of the boat's velocity directed toward the opposite bank.	
Velocity of stream	ISP20988 Lecture 5

