i-clicker question 1

The following two graphs show the speed of a car as a function of time. Which car has a larger magnitude for its acceleration?
A). Car 1

B). Car 2

MICHIGAN STATE
 U N IVERS I T Y

Question 2

For Car 1, what is the magnitude of the acceleration over the period from 2 to 8 seconds?
$\begin{array}{llll}\text { A). } 0 \mathrm{~m} / \mathrm{s}^{\wedge} 2 & \text { B). } \mathbf{2 . 0 ~ m / s} \wedge^{\wedge} & \text { C). } 1.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2 & \text { D). } 20 . \mathrm{m} / \mathrm{s}^{\wedge} 2\end{array}$ E). Can't tell

MICHIGAN STATE

Question 3

The graph is from Homework \#2 and describes the motion of a car as a function of time. The car begins by moving in the +x direction.

At what time is the speed (speed is the magnitude of velocity) zero?
A). 0 s
B). 20.0 s
C). 50.0 s
D). 60.0 s
E) 80.0 s

MICHIGAN STATE

Question 3

The graph is from Homework \#2 and describes the motion of a car as a function of time. The car begins by moving in the +x direction.

At what time is the speed the greatest? HINT: Look for the largest slope!
A). 0 s
B). 20.0 s
C). 50.0 s
D). 60.0 s
E) 80.0 s

MICHIGAN STATE

Question 3

The graph is from Homework \#2 and describes the motion of a car as a function of time. The car begins by moving in the +x direction.

At what time is the acceleration is the $(+\mathrm{x})$ direction?
A). 0 s
B). 15.0 s
C). 20.0 s
D). $\quad 36.0 \mathrm{~s}$
E) 60.0 s

MICHIGAN STATE

Question 3

The graph is from Homework \#2 and describes the motion of a car as a function of time. The car begins by moving in the +x direction.

At what time is the magnitude of the acceleration greatest?
A). 0 s
B). 16.0 s
C). 36.0 s
D). 60.0 s
E) 80.0 s

