MICHIGAN STATE
 U N IVERS I T Y

Today

- Announcements:
- HW\#2 is due Wednesday by 8:00 am
- Extra Credit project \#1 in on the LONCAPA website is also do next Wednesday at 8:00 am
- Review
- What is Force? Introduction

Scalars, Vectors, and Tensors (Stress tensor)

- Stress is defined as the force per unit area.
- In a solid object each point has three values of stress (up, left, right)
- The stress tensor describes the stress at all points in an object

http://en.wikipedia.org/wiki/Image:Stress_tensor.png

Motion

- Position - location relative to the center of a coordinate system (0,0). 2 miles NE
- Displacement - the difference between two positions
- Velocity - rate of change of position. This means changing direction as well.
- Acceleration - rate of change of velocity. If either the magnitude of the velocity or its direction are changing, the object is accelerating.

MICHIGAN STATE
 U N I VERS I T Y

Review

 to the curve at the time you want. The line can the line and record the

MICHIGAN STATE
 U N IVERS I TY

Homework Problem Traveling Car

Speed increasing acceleration and velocity in the same direction Speed decreasing opposite direction
(deceleration)

MICHIGAN STATE
 UN IVERS ITY

History of our effort to understand motion

- Aristotle(384 BC - 322 BC)
- Natural motions: items seek their natural locations
- Violet motions like moving across the room require an agent
- Galileo (1564-1642)
- Tried to deduce the laws of motion from experiments
- Introduced the concept of inertia. (Inertia is not a well defined concept.)
- He spent a great deal of effort trying to understand acceleration
- Isaac Newton (1643-1727)

What is a Force?

- A force is a push or pull.
- Force is a vector, it has a magnitude and a direction.
- A better definition is given by Newton's Three Laws of Force (my versions)
- If the net force on an object is zero the object will not accelerate.
- The amount of acceleration depends on the mass of the object and the amount of the applied force: $\mathrm{F}=\mathrm{ma}$.
- For every force, there is an equal and opposite force.
- Improved definition: Force is the rate of change of momentum.

MICHIGAN STATE

How much force?

Neglecting friction from the air, a 80.0 kg professor falls off a bench and accelerates toward the ground at $9.81 \mathrm{~m} / \mathrm{s}^{2}$.

What is the magnitude of the force of gravity on the professor?
$\mathrm{F}=$ mass x acceleration $=80.0 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}=785 . \mathrm{N}$

What is momentum?

- Momentum is mass times velocity.
- Momentum is a vector. Often we write it as a " p " .
- $\mathrm{p}=$ mass \cdot velocity
- Momentum is the modern analog to Galileo's idea of inertia.

Momentum Problem Picture

Momentum Problems

Hint: Force is the rate of change of momentum.

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=\frac{\Delta \overrightarrow{\mathrm{p}}}{\Delta \mathrm{t}}=\frac{\overrightarrow{\mathrm{P}}_{2}-\overrightarrow{\mathrm{p}}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}} \\
& \text { magnitude of } \mathrm{F} \text { for motion in one dimension }=\frac{\mathrm{p}_{2}-\mathrm{p}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}
\end{aligned}
$$

Note: A negative slope means the direction of the force is toward -x. Force is a vector, and direction matters.

What is a force (continued)?

- These laws let us recognize a force, but what causes a force?
- The modern view is related to field theory.
- Forces are the result of an exchange of particles.
- To under stand field theory, we have to talk about energy and quantum mechanics (later in the term).

