

Today

- Announcements:
 - HW#1 is due Wednesday by 8:00 am
 - The first extra credit assignment is on the LONCAPA system. One short answer is all that is required. The due date is 23 January at 8:00 am.
- Review
- Units
- Motion
- Scalars, Vectors, Tensors

MICHIGAN STATE

-1-

-3-

Time Travel

ISP209s8 Lecture 2

- Moving at high speed is a way to travel into the future. No problem here; this is correct.
- We can look into the past because, although the speed of light is fast, distances in space are large.
 - We see the Sun as it was 8 minutes ago
 - We see nearby stars as they were 4-10 years ago
 - The distance light travels in one year is called a light-year.
 - We see nearby galaxies as they were 1 million years ago
 - Looking out at the stars is like looking back in time.
- We can move forward in time. Can we move backward in time? Maybe

MICHIGAN STATE

Scalars, Vectors, Tensors

- Physical quantities can have characteristics.
- Scalars a quantity without direction
 - such as the mass of a object
 - the magnitude of a vector
- Vectors a quantity that has a length and direction
- **Tensors** generalized versions of vectors in multiple directions
 - The number of dimension in a tensor is called the rank
 - Rank 0 tensor is a scalar
 - Rank 1 tensor is a vector

Review

• What we know about the laws of nature say the speed of light is a constant, independent of the speed of the source.

• Time is the thing that is measured by clocks

- One of the implications is that moving clocks run slow
- Time is relative
- **Position** location relative to the center of a coordinate system (0,0)
- Velocity rate of change of position
- Acceleration rate of change of velocity
- Distance = speed x time (60 mi = 60 mph x 1 hr)

ISP209s8 Lecture 2

-2-

-9-

Units

- Physical quantities always have a unit attached; for example 2 *meters*
- Some quantities are a combination of units; for example 1 liter = 1000 cm³ (LONCAPA 1000 cm^{^3} or 1.0E3 cm^{^3} or 1.0E-3 m^{^3})

ISP209s8 Lecture 2

• How many liters are in a gallon?

MICHIGAN STATE

LONCAPA Units

- We will use the System International (SI) system of units. Link
- Common units
 - Kilogram (mass) kg
 - Meter (length) m
 - Second (time) s
 - Newton (force) N same as $kg*m/s^2$
 - Joule (energy) J same as N*m
 - Moles (Amount of substance) mol
- The LONCAPA system has help

ISP209s8 Lecture 2

Part Image of

MICHIGAN STATE UNIVERSITY

An example of unit conversion

100*cm*=1.00*m* This means there are:
$$\frac{1.00 \text{ m}}{100. \text{ cm}}$$

11.2*cm*²=11.2*cm*²× $\left(\frac{1.00m}{100cm}\right)^2$ =1.12×10⁻³*m*²

MICHIGAN STATE

-10-

Prefixes

prefix	name	value
n	nano	10-9
μ	micro	10-6
m	milli	10-3
с	centi	10-2
d	deci	10-1
		1
k	kilo	10 ³
М	Mega	106
G	giga	109

Example:

$$2.0My = 2.0 \times 10^{6} y$$

$$2.0My = \frac{1Gy}{1000My} \times 2.0My = 2.0 \times 10^{-3}Gy$$

ISP209s8 Lecture 2

MICHIGAN STATE UNIVERSITY

Velocity – Rate of change of position

Position (m)	Time (s)	
-1.0	0.0	
0.0	1.0	
1.0	2.0	
1.0	3.0	
0.5	4.0	

Velocity is the rate of change of position change in position $\vec{v} =$ change in time Speed is the magnitude of the velocity

s (between 1 and 2s) = $\frac{x_{\text{final}} - x_{\text{initial}}}{x_{\text{final}}}$ $\frac{1.0m - 0.0m}{2.0s - 1.0s} = 1.0 \frac{m}{s}$

ISP209s8 Lecture 2

-13-

MICHIGAN STATE UNIVERSITY

Velocity - Rate of change of position

(m) 0.0 -1.0 0.0 0.0 1.0 1.0 2.0 1.0 3.0 0.5 4.0	3.0 and 4.0 seconds? \vec{v} (between 3 and 4s) = $\frac{x_{\text{final}} - x_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}}$ A) 0.0 m/s B) 1.0 m/s C) -1.0 m/s D) -0.5 m/s E) 0.5 m/s What is the speed between 3.0 and 4.0 seconds? A) 0.0 m/s B) 1.0 m/s C) -1.0 m/s D) -0.5 m/s E) 0.5 m/s
	D - 0.5 m/s E = 0.5 m/s

ISP209s8 Lecture 2

-14-

MICHIGAN STATE UNIVERSITY

Back to Motion

Example: Motion of a car as a function of time.

MICHIGAN STATE UNIVERSITY

Calculation of Motion

What is the average speed at 2.5 min?

$$v = \frac{x_f - x_i}{t_e - t_i} = \frac{0.75 \text{ miles} - 0.25 \text{ miles}}{2.7 \text{ min} - 1.8 \text{ min}} = 0.56 \frac{\text{miles}}{\text{min}} \times \frac{60 \text{ min}}{h} = 33.6 \frac{\text{miles}}{h}$$

We get 0.60 miles/min = 33.6 mph from the velocity graph. ISP209s8 Lecture 2 -16-

