MICHIGAN STATE
 U N IVERS I T Y

Clicker Question

Suppose that normal living tuna contains a certain nucleus that has a half-life of 10 years. Once canned the nuclei begin to decay. If we find a can that has half the expected amount of the nucleus, how old is the can?
A). We can not tell
B). 1 year
C). 10 years
D). 20 years
E). $1 / 2$ year

MICHIGAN STATE
 U N IVERS I T Y

Clicker Question

After three half-lives, what fraction of the original material is left?
A). $1 / 2$
B). $(1 / 2) \cdot(1 / 2) \cdot(1 / 2)=1 / 8$
C). $(1 / 2) \cdot(1 / 2)=1 / 4$
D). $(1 / 2) \cdot(1 / 2)=1 / 64$
E). $2^{3}=8$

MICHIGAN STATE
 U N IVERS I TY

Clicker Question

The equation for fraction remaining is

$$
f=\frac{A}{B}=\left(\frac{1}{2}\right)^{C}
$$

Which letter in the above equation is the number of half-lives?
A). A
B). B
C). C

MICHIGAN STATE
 U N IVERS I T Y

Clicker Question

DATA: Take the half-life of 14-C to be 6000 years.
If we find a sample of old bone that has $(1 / 16)$ the normal amount of 14-C found in living bone, how old is the bone?
A). 6000 years
B). 12,000 years
C). $\mathbf{2 4 , 0 0 0}$ years
D). $(1 / 16)$ years
E). $(1 / 6000)^{4}$ years

MICHIGAN STATE
 U N I V ER S I T Y

Clicker Question

When rock forms it has almost no 40-Ar in it. However, the radioactive isotope $40-\mathrm{K}$, which does form in rock, decays to 40 -Ar with a half-life of 1.3 billion years.

Suppose we find a rock with a ratio of $40-\mathrm{Ar}$ to $40-\mathrm{K}$ of $1: 1$. How old is the rock?
A)0 years B) 1.3 billion years C) 2.6 billion years
D) 3.9 billion years E) It is not possible to have that ratio

