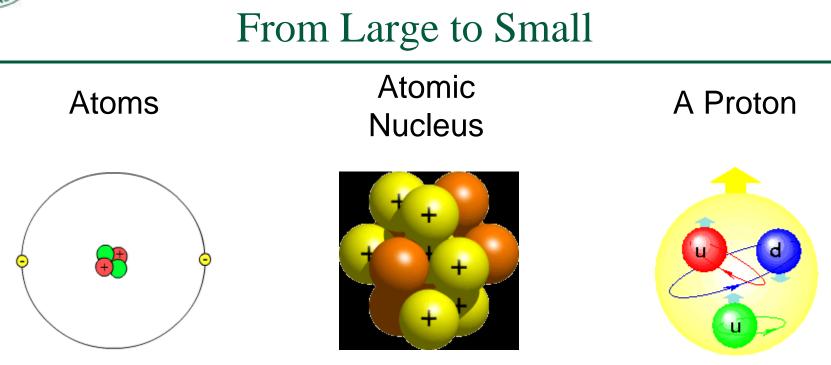



- Announcements:
  - HW#9 is due April 2 at 8:00 am
  - Voting for the Spring Break Story contest is due April 2 at 8:00 am
  - HW#10 will be due April 9 at 8:00 am
- Atoms and Nuclei

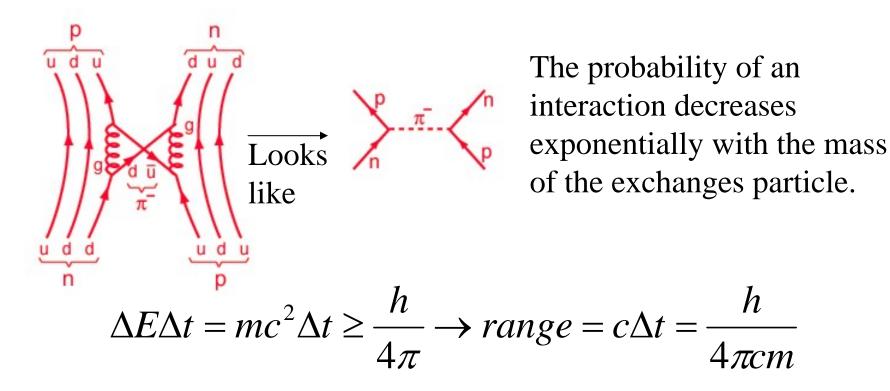



#### History

- ca. Fourth century B.C.: Democritus proposes that matter is made of indivisible units called *atoma*.
- 1896: Henri Becquerel discovers radioactivity by chance.
- 1911: Ernest Rutherford discovers the nucleus. He found something hard and small at the center of atoms



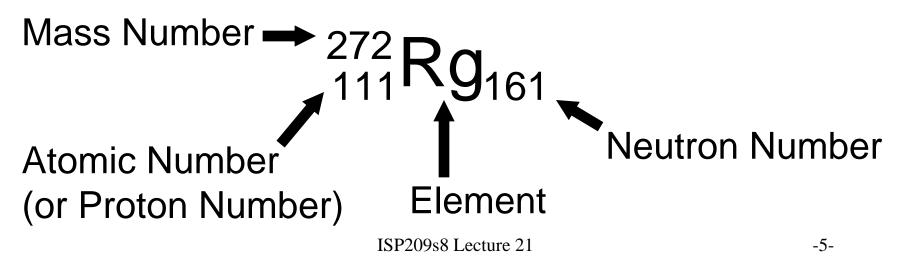





Made of nuclei and electrons. Size: 10<sup>-9</sup> m Made of neutrons and protons. Size: 10<sup>-14</sup> m Made of quarks. Size: 10<sup>-15</sup> m A neutron has ddu quarks.<sub>3-</sub>

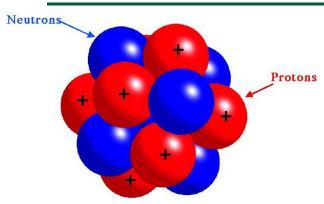


### The Strong force at work


Strong force actually is mostly the result of exchange of pairs of quarks.

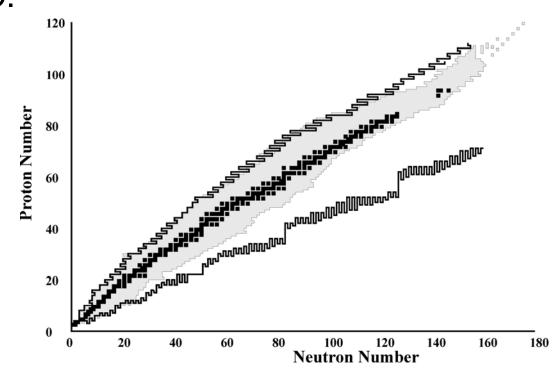





### The Nucleus

- The nucleus contains more than 99.95% of an atom's mass, but only 1E-15 of its volume!
- The *nucleons* are held together by the *strong force*, even though the protons repel each other very strongly.



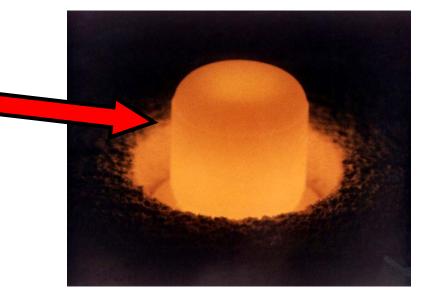



#### Atomic Nuclei and Elements



The number of protons determine the element (oxygen). The number of neutrons+protons determines the atomic mass (16 as shown). This nucleus is <sup>16</sup>O.

The Chart of the Nuclides: A Map of All Known and Possible Nuclei





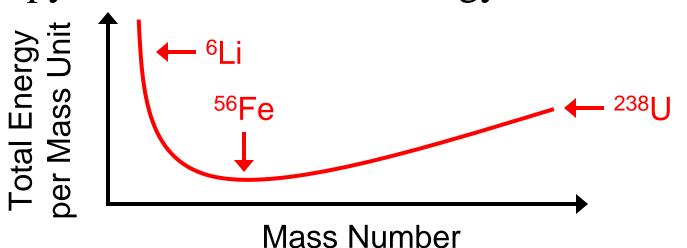

### Radioactivity

- A radioactive nucleus is unstable:
  - Alpha Decay  $^{238}Pu \rightarrow ^{234}U + ^{4}He$
  - Beta Decay
    - $^{131}$ I  $\rightarrow ^{131}$ Xe + e<sup>-</sup> +  $\overline{\nu}$
  - Gamma Decay
    - $^{152}\text{Dy}^* \rightarrow ^{152}\text{Dy} + \gamma$

– Fission



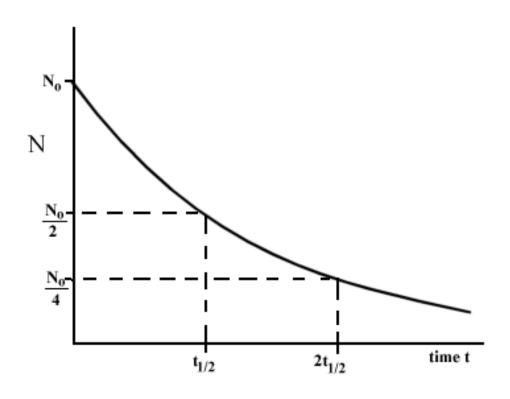
<sup>238</sup>Pu heated by its own radioactivity.


 ${}^{248}\text{Cm} \rightarrow {}^{144}\text{Ce} + {}^{102}\text{Sr} + 2{}^{1}\text{n} \quad (\text{spontaneous})$  ${}^{1}\text{n} + {}^{235}\text{U} \rightarrow {}^{141}\text{Ba} + {}^{92}\text{Kr} + 3{}^{1}\text{n} \quad (\text{induced})$ 



-8-

### Why are some nuclei unstable?


- Two fundamental tendencies in nature:
  - Move toward higher entropy
  - Move toward lower potential energy
- For most nuclear processes the change in entropy is ~0. Therefore, energy dominates.





#### Half-Life

Radioactive decay is governed by the rules of quantum mechanics. If we start with  $N_0$  atoms, after one **half-life** then half will have decayed (on average). In the next half-life, half of those remaining will have decayed, and so on.







### Law of Radioactive Decay

• Nuclei decay according to the Law of Radioactive decay:

Amount Now 
$$\longrightarrow N = N_0 e^{-\lambda t}$$
 Time  
Original Amount  $\longrightarrow N = N_0 e^{-\lambda t}$  A Constant

• A more useful form is this: Observed Ratio =  $\frac{N}{N_0} = \left(\frac{1}{2}\right)^{(t/t_{1/2})}$   $t_{1/2}$  is the Half-Life



#### Sample Problem

Suppose we find a sample of material that has 43.5% of the expected original amount. The half-life of the material is 23.0 days. What is the best estimate for the age of the sample?

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{(t/t_{1/2})} \Rightarrow \frac{N}{N_0} = 0.435 = \left(\frac{1}{2}\right)^{(t/23.0 \text{ d})}$$
$$\ln 0.435 = \ln \left[ (1/2)^{\left(\frac{t}{23.0 \text{ d}}\right)} \right] = \left(\frac{t}{23.0 \text{ d}}\right) \ln(1/2)$$
$$\Rightarrow t = \frac{(23.0 \text{ d})(\ln 0.435)}{\ln(1/2)} = 27.6 \text{ d}$$



### Radioisotope Dating

• <sup>14</sup>C is an isotope of carbon that is produced continually by the interaction of cosmic rays with <sup>14</sup>N in the atmosphere:

 $^{1}n + {}^{14}N \rightarrow {}^{14}C + {}^{1}H$ 

- An organism establishes an "equilibrium" with <sup>14</sup>C by breathing in <sup>14</sup>CO<sub>2</sub>.
- After death, no new <sup>14</sup>C is absorbed, so it decays away with a half-life of 5730 years.



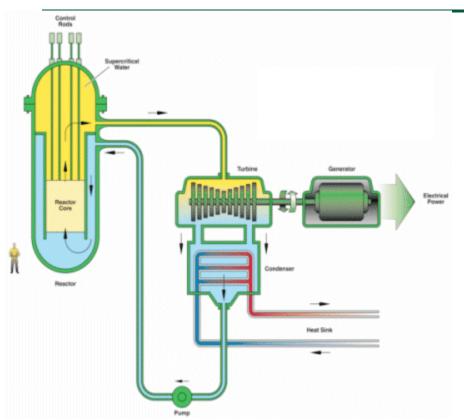
### Examples of Radioactive Dating

- <sup>14</sup>C (half-life = 5730 y) is used to date archeological objects. Normal living material has a certain amount of <sup>14</sup>C, which is produced in the atmosphere.
- <sup>40</sup>K (half-life = 1.25 Gy) is used to date rocks. It decays 10% of the time to <sup>40</sup>Ar which is not naturally found in most rocks.
- ${}^{238}$ U (half-life = 4.5 Gy) is used to date the Earth, the Sun, and other stars. This is one of the ways we estimate that the Earth is 4.5 Gy old.



### Average Dose per Year

| We are constantly exposed to small amounts of     |                  |  |
|---------------------------------------------------|------------------|--|
| radiation. As long as the damage is not too great |                  |  |
| our natural repair mechanisms fix the damage:     |                  |  |
| Source                                            | Dose (mrem/year) |  |
| Radon                                             | 200              |  |
| Medical/Dental X-Rays                             | 40               |  |
| Internal Sources                                  | 40               |  |
| Other Natural Sources                             | 60               |  |
| <b>Consumer Products</b>                          | ~11              |  |




#### Average Dose per Year (continued)

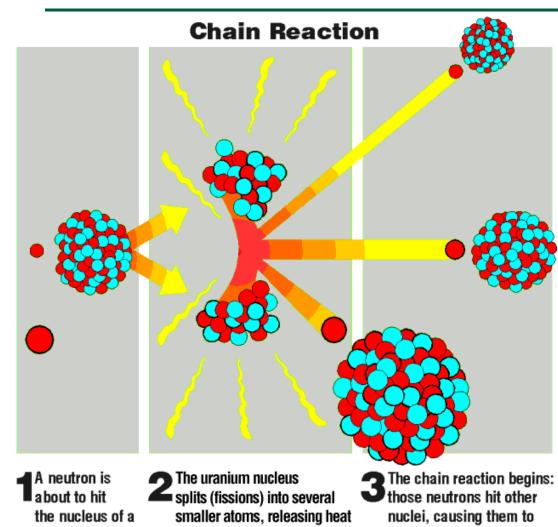
| Source                       | Dose (mrem/year) |
|------------------------------|------------------|
| Nuclear Medicine             | ~15              |
| Fallout from weapons testing | ~2               |
| Nuclear Power                | ~0.4             |
| Coal Power                   | ~1.2             |
| Total (U.S. Average)         | ~360             |
| Smoking one pack per day     | +1200            |
| Smoking two packs per day    | +2400            |



#### Nuclear Power



- A nuclear reactor is a fancy way of generating heat to produce steam. The rest works like a traditional power plant.
- All nuclear plants produce *fissile* material as part of their operation. This had led to concerns about *proliferation* of this material, which could be used for a dirty bomb or possibly to make a nuclear weapon.
- Nuclear plants produce radioactive wastes which must be stored safely, possibly for tens of thousands of years.
- Nuclear plants do not produce greenhouse gases.




uranium atom.

## MICHIGAN STATE

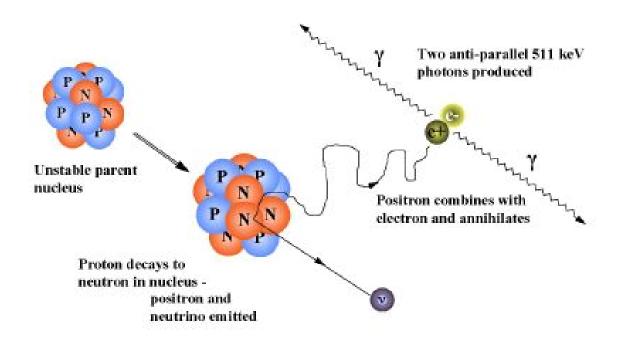
#### **Chain Reaction**

fission. And so on.



and several more neutrons.

- This process repeats continuously.
- Nuclear Reactor: Stays at "criticality."
- Nuclear Weapon: Reaction goes "supercritical."



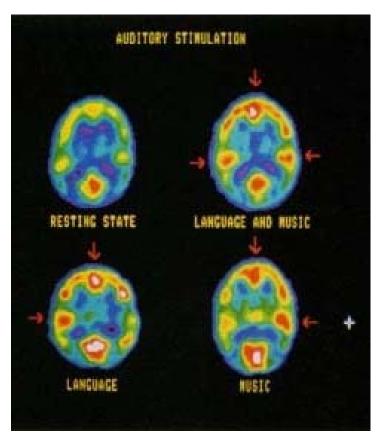

#### RISK – Average Loss of Life Expectancy (days)

Being male 2800 Being unmarried 2000 Smoking cigarettes (1 pack/day) 1600 Coal Mining 1100 Cancer 980 30 lb overweight 900; 15 lb overweight 450 Driving a car (risk of accidents) 200 Alcohol 130 Homicide 90 Drowning 40 Diet drinks, one per day for life 2 Power generated by all nuclear 1.5 (Union Concerned Scientists) Hurricanes and tornadoes 1 Airline crashes 1



#### How Positron Emission Tomography Works






#### **PET Scanner**





### Nuclear Medicine



- *Radiolabelled* compounds can be injected into the body for diagnostic purposes.
- Similarly, compounds can be attached to tumors to kill them (but leaves them in place).
- X-rays, CT scans, PET scans.

Example of use Roger Ressmeyer/Corbis