

Today

- Announcements:
 - HW#1 is due Wednesday by 8:00 am
 - The first extra credit assignment is on the LONCAPA system. One short answer is all that is required. The due date is 23 January at 8:00 am.
- Review
- Units
- Motion
- Scalars, Vectors, Tensors

MICHIGAN STATE UNIVERSITY

Review

- Time is the thing that is measured by clocks
- What we know about the laws of nature say the speed of light is a constant, independent of the speed of the source.
 - One of the implications is that moving clocks run slow
 - Time is relative
- **Position** location relative to the center of a coordinate system (0,0)
- Velocity rate of change of position
- Acceleration rate of change of velocity
- Distance = speed x time (60 mi = 60 mph x 1 hr)

Time Travel

- Moving at high speed is a way to travel into the future. No problem here; this is correct.
- We can look into the past because, although the speed of light is fast, distances in space are large.
 - We see the Sun as it was 8 minutes ago
 - We see nearby stars as they were 4-10 years ago
 - The distance light travels in one year is called a light-year.
 - We see nearby galaxies as they were 1 million years ago
 - Looking out at the stars is like looking back in time.
- We can move forward in time. Can we move backward in time? Maybe

Scalars, Vectors, Tensors

- Physical quantities can have characteristics.
- Scalars a quantity without direction
 - such as the mass of a object
 - the magnitude of a vector
- Vectors a quantity that has a length and direction
- **Tensors** generalized versions of vectors in multiple directions
 - The number of dimension in a tensor is called the rank
 - Rank 0 tensor is a scalar
 - Rank 1 tensor is a vector

Examples of Scalars

- mass, electric charge
- speed (magnitude of velocity)
- amount of money in my wallet
- the volume of a container (gallons or liters)

Examples of Vectors

- Position 2 miles <u>East</u> of Spartan Stadium
- Velocity 60 mph toward Detroit
- Acceleration $-9.8 \text{ m/s}^2 \text{ down}$
- Note: velocity and acceleration can have opposite directions. Example: a ball moving upward.

ISP209s8 Lecture 2

Motion

- **Position** location relative to the center of a coordinate system (0,0). 2 miles NE
- Velocity rate of change of position. This means changing direction as well.
- Acceleration rate of change of velocity. If either the magnitude of the velocity or its direction are changing, the object is accelerating.

Units

- Physical quantities always have a unit attached; for example 2 *meters*
- Some quantities are a combination of units; for example 1 liter = 1000 cm³ (LONCAPA 1000 cm³ or 1.0E3 cm³ or 1.0E-3 m³)
- How many liters are in a gallon?

LONCAPA Units

- We will use the System International (SI) system of units. <u>Link</u>
- Common units
 - Kilogram (mass) kg
 - Meter (length) m
 - Second (time) s
 - Newton (force) N same as $kg*m/s^2$
 - Joule (energy) J same as N*m
 - Moles (Amount of substance) mol
- The LONCAPA system has help

An example of unit conversion

100 cm=1.00 m This means there are:
$$\frac{1.00 \text{ m}}{100. \text{ cm}}$$

11.2 cm²=11.2 cm²× $\left(\frac{1.00 m}{100 \text{ cm}}\right)^2$ =1.12×10-3 m²

Prefixes

prefix	name	value
n	nano	10-9
μ	micro	10-6
m	milli	10-3
С	centi	10-2
d	deci	10-1
		1
k	kilo	10 ³
Μ	Mega	106
G	giga	109

Example:

$$2.0My = 2.0 \times 10^{6} y$$

$$2.0My = \frac{1Gy}{1000My} \times 2.0My = 2.0 \times 10^{-3}Gy$$

Velocity – Rate of change of position

Position (m)	Time (s)
-1.0	0.0
0.0	1.0
1.0	2.0
1.0	3.0
0.5	4.0

Velocity is the rate of change of position $\vec{v} = \frac{\text{change in position}}{\text{change in time}}$

Speed is the magnitude of the velocity

s (between 1 and 2s) = $\frac{x_{\text{final}} - x_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}}$

$$\frac{1.0m - 0.0m}{2.0s - 1.0s} = 1.0 \frac{m}{s}$$

Velocity – Rate of change of position

Position (m)	Time (s)
-1.0	0.0
0.0	1.0
1.0	2.0
1.0	3.0
0.5	4.0

What is the velocity between 3.0 and 4.0 seconds?

 \vec{v} (between 3 and 4s) = $\frac{x_{\text{final}} - x_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}}$ A) 0.0 m/s B) 1.0 m/s C) -1.0 m/s D) -0.5 m/s E) 0.5 m/s

What is the speed between 3.0 and 4.0 seconds?

A) 0.0 m/s B) 1.0 m/s C) -1.0 m/s D) -0.5 m/s E) 0.5 m/s

-15-

Back to Motion

Example: Motion of a car as a function of time.

Velocity is the rate of change of position:

ISP209s8 Lecture 2

 $\vec{v} =$

Calculation of Motion

What is the average speed at 2.5 min?

 $v = \frac{x_f - x_i}{t_f - t_i} = \frac{0.75 \text{miles} - 0.25 \text{miles}}{2.7 \text{min} - 1.8 \text{min}} = 0.56 \frac{\text{miles}}{\text{min}} \times \frac{60 \text{min}}{h} = 33.6 \frac{\text{miles}}{h}$ We get 0.60 miles/min = 33.6 mph from the velocity graph. ISP209s8 Lecture 2 -16-

Motion Problem

At what time is the acceleration negative?

- A) 0.5 min
- B) 2.2 min
- C) 3.3 min
- D) 5.3 min
- E) 6.4 min

ISP209s8 Lecture 2

Example 2: Stress Tensor

- Stress is defined as the force per unit area.
- In a solid object each point has three values of stress (up, left, right)
- The stress tensor describes the stress at all points in an object

http://en.wikipedia.org/wiki/Image:Stress_tensor.png

MICHIGAN STATE UNIVERSITY

Tensors (tensor fields)

Tensors are objects that have more than one value at each point in space.

• Example: Curvature of space-time: Riemann curvature tensor

One number is not sufficient to describe each point in space.

ISP209s8 Lecture 2