MICHIGAN STATE
 U N IVERS I T Y

Today

- Announcements:
- HW\#1 is due Wednesday by 8:00 am
- The first extra credit assignment is on the LONCAPA system. One short answer is all that is required. The due date is 23 January at 8:00 am.
- Review
- Units
- Motion
- Scalars, Vectors, Tensors

Review

- Time is the thing that is measured by clocks
- What we know about the laws of nature say the speed of light is a constant, independent of the speed of the source.
- One of the implications is that moving clocks run slow
- Time is relative
- Position - location relative to the center of a coordinate system (0,0)
- Velocity - rate of change of position
- Acceleration - rate of change of velocity
- Distance $=$ speed x time $(60 \mathrm{mi}=60 \mathrm{mph} \times 1 \mathrm{hr})$

Time Travel

- Moving at high speed is a way to travel into the future. No problem here; this is correct.
- We can look into the past because, although the speed of light is fast, distances in space are large.
- We see the Sun as it was 8 minutes ago
- We see nearby stars as they were 4-10 years ago
- The distance light travels in one year is called a light-year.
- We see nearby galaxies as they were 1 million years ago
- Looking out at the stars is like looking back in time.
- We can move forward in time. Can we move backward in time? Maybe

Scalars, Vectors, Tensors

- Physical quantities can have characteristics.
- Scalars - a quantity without direction
- such as the mass of a object
- the magnitude of a vector
- Vectors - a quantity that has a length and direction
- Tensors - generalized versions of vectors in multiple directions
- The number of dimension in a tensor is called the rank
- Rank 0 tensor is a scalar
- Rank 1 tensor is a vector

Examples of Scalars

- mass, electric charge
- speed (magnitude of velocity)
- amount of money in my wallet
- the volume of a container (gallons or liters)

MICHIGAN STATE
 U N I V ER S I T Y

Examples of Vectors

- Position - 2 miles East of Spartan Stadium
- Velocity - 60 mph toward Detroit
- Acceleration - 9.8 m/s ${ }^{2}$ down
- Note: velocity and acceleration can have opposite directions. Example: a ball moving upward.

MICHIGAN STATE
 U N IVERS I T Y

Vectors

Representation

Addition

A is the same vector no matter where it sits.

MICHIGAN STATE
 U N I V ER S I T Y

Motion

- Position - location relative to the center of a coordinate system (0,0). 2 miles NE
- Velocity - rate of change of position. This means changing direction as well.
- Acceleration - rate of change of velocity. If either the magnitude of the velocity or its direction are changing, the object is accelerating.

Units

- Physical quantities always have a unit attached; for example 2 meters
- Some quantities are a combination of units; for example 1 liter $=1000 \mathrm{~cm}^{3}$ (LONCAPA $1000 \mathrm{~cm} \wedge 3$ or $1.0 \mathrm{E} 3 \mathrm{~cm} \wedge 3$ or $1.0 \mathrm{E}-3 \mathrm{~m} \wedge 3$)
- How many liters are in a gallon?

MICHIGAN STATE
 U N IVERS I TY

LONCAPA Units

- We will use the System International (SI) system of units. Link
- Common units
- Kilogram (mass) kg
- Meter (length) m
- Second (time) s
- Newton (force) N - same as $\mathrm{kg*m} / \mathrm{s}^{\wedge} 2$
- Joule (energy) J - same as $\mathrm{N}^{*} \mathrm{~m}$
- Moles (Amount of substance) - mol
- The LONCAPA system has help

MICHIGAN STATE

An example of unit conversion

$100 \mathrm{~cm}=1.00 \mathrm{~m} \quad$ This means there are: $\frac{1.00 \mathrm{~m}}{100 . \mathrm{cm}}$
$11.2 \mathrm{~cm}^{2}=11.2 \mathrm{~cm}^{2} \times\left(\frac{1.00 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}=1.12 \times 10^{-3} \mathrm{~m}^{2}$

MICHIGAN STATE

UN IVERS ITY

Prefixes

prefix	name	value	Example:
n	nano	10^{-9}	
μ	micro	10^{-6}	
m	milli	10^{-3}	$\begin{aligned} & 2.0 M y=2.0 \times 10^{6} y \\ & 2.0 M y=\frac{1 G y}{1000 M y} \times 2.0 M y=2.0 \times 10^{-3} G y \end{aligned}$
c	centi	10^{-2}	
d	deci	10^{-1}	
		1	
k	kilo	10^{3}	
M	Mega	10^{6}	
G	giga	10^{9}	

MICHIGAN STATE
 U N I V ER S I T Y

Velocity - Rate of change of position

Position (m)	Time (s)
-1.0	0.0
0.0	1.0
1.0	2.0
1.0	3.0
0.5	4.0

Velocity is the rate of change of position

$$
\vec{v}=\frac{\text { change in position }}{\text { change in time }}
$$

Speed is the magnitude of the velocity

$$
s(\text { between } 1 \text { and } 2 s)=\frac{\mathrm{X}_{\text {final }}-\mathrm{X}_{\text {initial }}}{\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}}
$$

$$
\frac{1.0 \mathrm{~m}-0.0 \mathrm{~m}}{2.0 \mathrm{~s}-1.0 \mathrm{~s}}=1.0 \mathrm{~m} / \mathrm{s}
$$

MICHIGAN STATE
 U N I VERS I T Y

Velocity - Rate of change of position

Position (m)	Time (s)
-1.0	0.0
0.0	1.0
1.0	2.0
1.0	3.0
0.5	4.0

What is the velocity between 3.0 and 4.0 seconds?
\vec{v} (between 3 and 4 s) $=\frac{\mathrm{X}_{\text {final }}-\mathrm{X}_{\text {initial }}}{\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}}$
A) $0.0 \mathrm{~m} / \mathrm{s}$ B) $1.0 \mathrm{~m} / \mathrm{s} \mathrm{C)}-1.0 \mathrm{~m} / \mathrm{s}$ D) $-0.5 \mathrm{~m} / \mathrm{s}$ E) $0.5 \mathrm{~m} / \mathrm{s}$

What is the speed between 3.0 and 4.0 seconds?
A) $0.0 \mathrm{~m} / \mathrm{s}$ B) $1.0 \mathrm{~m} / \mathrm{s} \mathrm{C)}-1.0 \mathrm{~m} / \mathrm{s}$ D) $-0.5 \mathrm{~m} / \mathrm{s}$ E) $0.5 \mathrm{~m} / \mathrm{s}$

MICHIGAN STATE
 U N I VERS I T Y

Back to Motion

Example: Motion of a car as a function of time.

Velocity is the rate of change of position: $\quad \vec{v}=\frac{\vec{X}_{2}-\vec{X}_{1}}{t_{2}}$

$$
t_{2}-t_{1}
$$

Calculation of Motion

What is the average speed at 2.5 min ?

$$
v=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{0.75 \text { miles }-0.25 \mathrm{miles}}{2.7 \mathrm{~min}-1.8 \mathrm{~min}}=0.56 \frac{\text { miles }}{\mathrm{min}} \times \frac{60 \mathrm{~min}}{h}=33.6 \frac{\text { miles }}{\mathrm{h}}
$$

We get $0.60 \mathrm{miles} / \mathrm{min}=33.6 \mathrm{mph}$ from the velocity graph.

MICHIGAN STATE
 UN IVERS ITY

Motion Problem

At what time is the acceleration negative?
A) 0.5 min
B) 2.2 min
C) 3.3 min
D) 5.3 min
E) 6.4 min
x direction $\longrightarrow \quad+$ is to the right, - is to the left

MICHIGAN STATE
 U N I VERS I T Y

Example 2: Stress Tensor

- Stress is defined as the force per unit area.
- In a solid object each point has three values of stress (up, left, right)
- The stress tensor describes the stress at all points in an object

http://en.wikipedia.org/wiki/Image:Stress_tensor.png

Tensors (tensor fields)

Tensors are objects that have more than one value at each point in space.

- Example: Curvature of space-time: \mathbf{R} Riemann curvature tensor

One number is not sufficient to describe each point in space.

