- Announcements:
- The average on the first exam was $31 / 40$
- Exam extra credit is due by 8:00 am Wednesday February 13th.
- The second homework extra credit is due by Wednesday February 13th.
- $\mathrm{F}=\mathrm{ma}$
- Electric Force
- Work, Energy and Power

$\mathrm{F}=\mathrm{ma}$

An equation is worth greater than half the words of a picture.

- Force is equal to mass times acceleration.
- For a given force, the amount of acceleration is inversely proportional to the mass.
- Force causes acceleration.
- If you observe acceleration, there must be a force acting.

ISP209s7 Lecture 10

A new Force!

- Charge is a property of matter. It is measured in Coulombs C.
- Like charges repel, unlike charges attract.
- Coulomb's Law of Electric Force

$$
F=\frac{k Q_{1} Q_{2}}{r_{12}^{2}} \quad k=8.99 E 9 N \cdot m^{2} / C^{2}
$$

- Energy is the ability to do work
- Energy comes in two forms
- Kinetic (KE) - energy of motion
- Potential (PE) - energy of position
- There are many variants on these type main types, e.g. chemical, nuclear, thermal, ...

Examples:

- A mass of 1.0 kg is raised 1.0 m . How much work was done?

$$
\mathrm{W}=\Delta \mathrm{GPE}=\mathrm{mg} \Delta \mathrm{~h}=1.0 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s} \wedge 2 \times 1.0 \mathrm{~m}=9.81 \mathrm{~J}
$$

- A 90.0 kg ISP209 professor walks up two flights of stairs. How much did his/her potential energy increase? DATA 1 flight of stairs $=3.00 \mathrm{~m}$ $\Delta \mathrm{GPE}=90.0 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s} 2 \times 2$ flights $\times(3 \mathrm{~m} /$ flight $)=5.29 \mathrm{~kJ}$
- Energy is the ability to do work: Work = force x distance $=$ F d
- Energy comes in two forms
- Kinetic (KE) - energy of motion
- Potential (PE) - energy of position

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& \mathrm{~m} \text { - mass } \\
& \mathrm{v} \text { - velocity }
\end{aligned}
$$

Gravitational GPE $=\mathrm{m}(\mathrm{gh}) ; \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ on Earth,
h height

- Power (measured in $\mathrm{W}=\mathrm{J} / \mathrm{s}$) is the rate of change (or use) of energy
\qquad
- Work = Force x distance
- Work is a scalar and is measured in Joules, J
- Bill pushes on a wall with 10 N for 33 s . If the wall does not move, how much work is done on the wall?
- Work $=10.0 \mathrm{~N} \mathrm{x} 0.0 \mathrm{~m}=0.0 \mathrm{~N}$
- How does that make sense? Work has a strict definition. If the kinetic or potential energy of the wall did not change, no work was done on the wall.
- Work changes energy from one form to another.
- Power is the rate of change of energy
- Power $=($ change in energy)/(change in time)
- Power is a scalar and is measured in watts.
- Light bulbs are measured in watts
- Sun (a big light bulb) $-3.827 \times 10^{26} \mathrm{~W}$

Example Problem

How many kcal are burned by doing 1500 J of work?
DATA: The human body is 10% efficient in converting food energy to work.

$$
\begin{aligned}
& \mathrm{cal}=\text { energy } \cdot \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}} \cdot\left(\frac{1}{\text { efficiency }}\right) \\
& 1500 \mathrm{~J} \cdot \frac{1 \mathrm{cal}}{4.184 \mathrm{~J}} \cdot\left(\frac{1}{0.1}\right)=3590 . \mathrm{cal}=3.59 \mathrm{kcal}
\end{aligned}
$$

