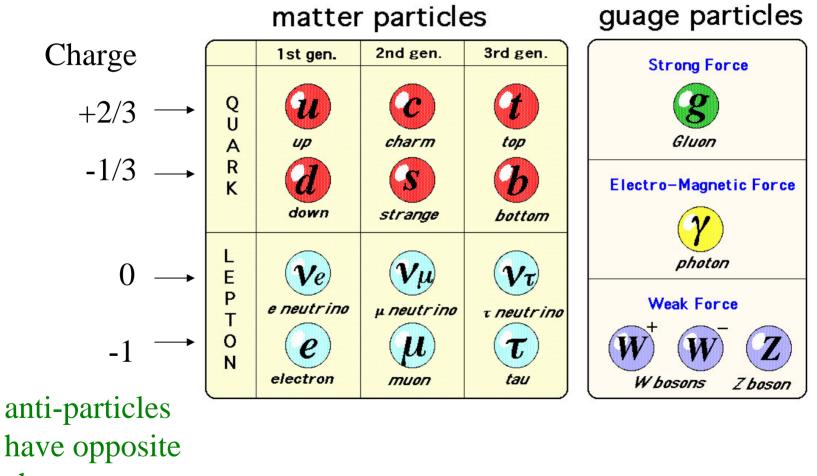
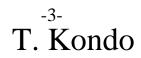


Today – Exam#2 Review

- Exam #2 is Thursday March 13 in this room, BPS 1410
- Extra Credit Projects: Spring Break Story Contest
- The exam is 40 multiple choice questions. There are a few questions where you will have to use a formula and calculator.
- Bring your student ID
- You will have the full 80 minutes for the exam.
- You can bring one 8.5x11 inch sheet of notes (front and back)

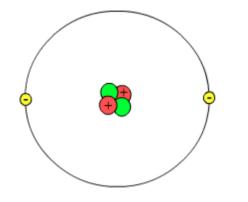

MICHIGAN STATE UNIVERSITY

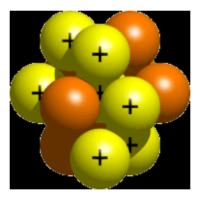
Where are we?


- There are 4 known forces in nature (Gravity, weak, EM- electromagnetic , strong)
- Gravity does not fit well in our understanding with the others
 - It is very weak compared to the others. Why?
- Our current understanding of nature is by Quantum field theory: EM quantum electrodynamics, EM+weak electroweak theory, Strong quantum chromodynamics).
- Our understanding of force involves the exchange of force carrying bosons between particles

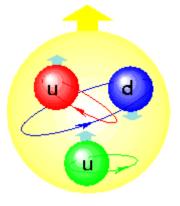
The particles of nature

charge



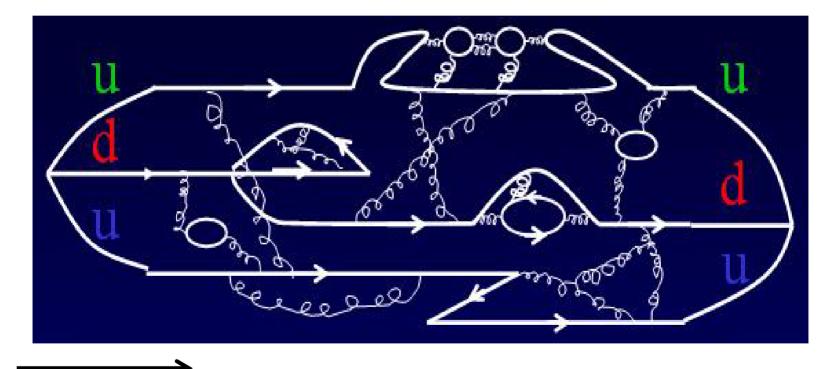


How nature is put together from the pieces...


Atoms

Atomic Nucleus

Made of nuclei and electrons. Size: 10⁻⁹m


Made of neutrons and proton. Size 10⁻¹⁴ m

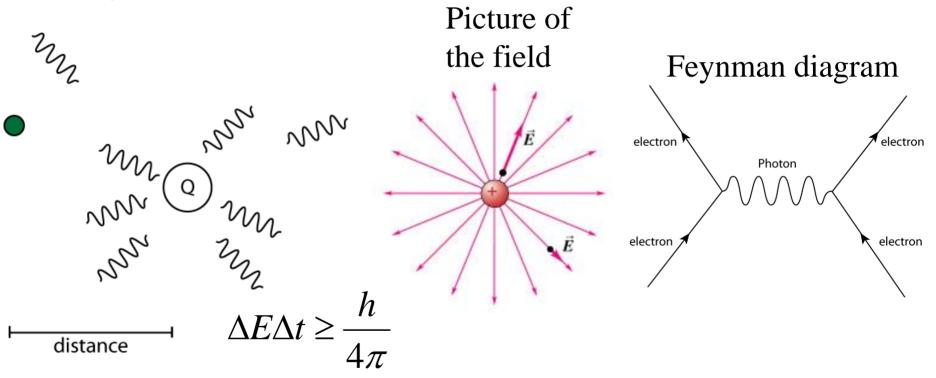
Made of quarks: Size 10⁻¹⁵ m A neutron has ddu _4-

Closer to what a proton really looks like

time

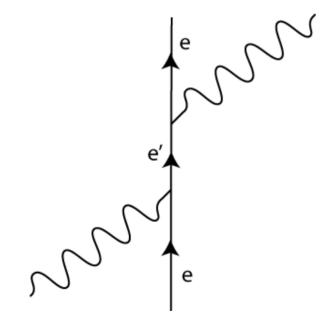
http://www.gwu.edu/~cns/theory/theory_webpage/proton2_qcd.jpg

A summary of the forces of nature


Force	Strength	Carrier	Acts on	Range (m)
Strong	1	Gluon, g	quarks	10 ⁻¹⁵ size of a proton
Electromagnetic	1/137	photon	anything with charge	infinite
Weak	10-6	Vector Bosons W ^{+,} W ⁻ , Z ⁰	quarks, electrons (leptons) , neutrinos	10 ⁻¹⁸ Only 0.001 width of proton
Gravity	6x10 ⁻³⁹	Graviton (?)	anything with mass	infinite

Our Picture of Force

A charge creates a field...



Virtual particles can exist for a short time.

Why is the sky blue? Feynman Diagram

The process is more likely if the photon energy is higher. Hence blue light scatters more than red light.

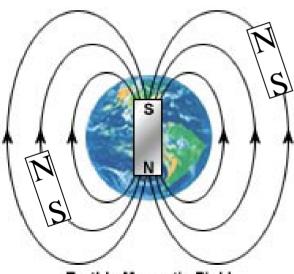
Coulombs Law

• Charge comes in units of 1.6E-19C.

• The force between two charges is:

$$F = \frac{kq_1q_2}{r_{12}^2}; k = 8.99 \times 10^9 \frac{Nm^2}{C^2}$$

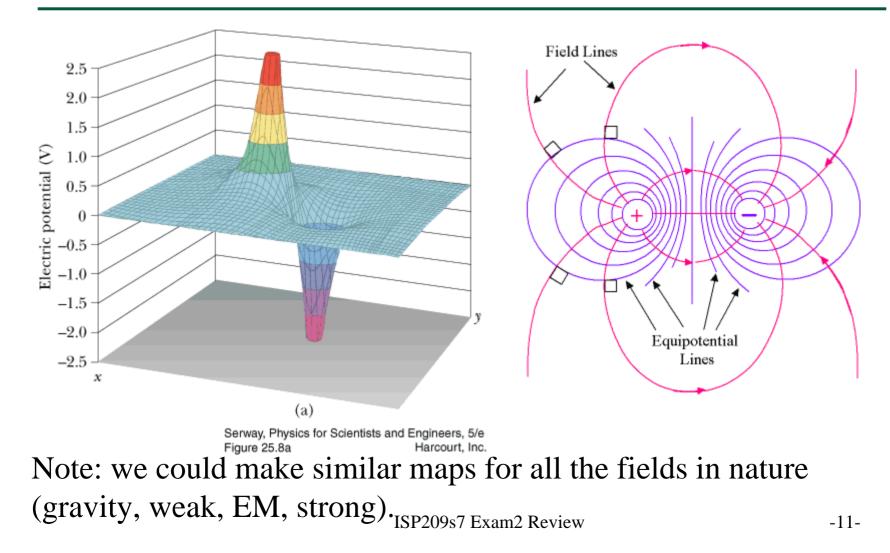
• Example (inverse square law): 4 times the distance kaa = 1 kaa = 1 kaa = 1


$$F_{4d} = \frac{\kappa q_1 q_2}{\left(4r_{12}\right)^2} = \frac{1}{4^2} \frac{\kappa q_1 q_2}{r_{12}^2} = \frac{1}{16} \frac{\kappa q_1 q_2}{r_{12}^2} = \frac{1}{16} F_d$$

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

The Earth behaves as a large magnet

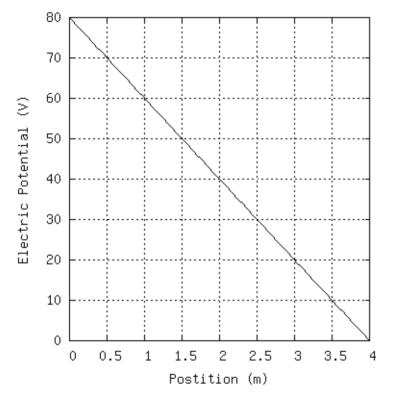
The Earth is like a large magnet with a south magnetic pole at the North geographic pole.


Earth's Magnetic Field

- T/F A-true B-false
- **T** North pole of a compass points north in northern hemisphere
- **F** North pole of a compass points south in southern hemisphere
- **T** North pole of a compass points towards the north in the southern hemisphere

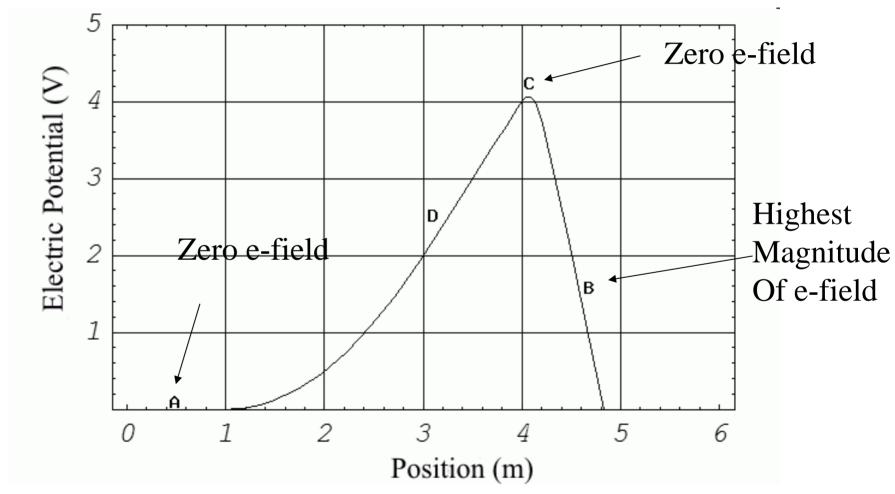
Map for the Electric Field

 $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$


The relation between electric and magnetic fields

- Charge creates an electric field (and potential, V)
- Moving charge creates a magnetic field
- The photon is responsible for transmitting both the electric and the magnetic forces
- Maxwell's equations describe the relationship
 - Charge makes electric fields
 - Changing magnetic field makes electric fields
 - Changing electric fields make magnetic fields
 - Magnets always come with a north and a south pole
 - EM waves travel at the speed of light (in a vacuum)

Sample Problem


What is the magnitude of the electric field at 2.0 m?

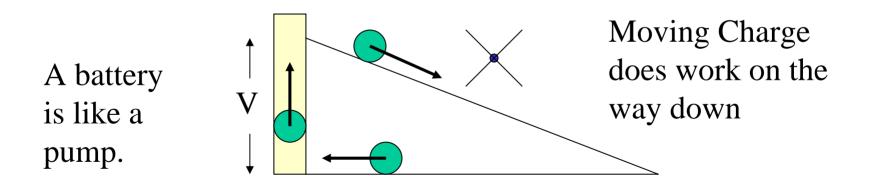
$$E = -\frac{\Delta V}{\Delta x} = -\frac{(0V - 80V)}{(4m - 0m)} = 20.0\frac{V}{m} = 20.0\frac{N}{C}$$

Sample Problem

Electric field is the rate of change of potential with position.

Simple Problem

$\mathbf{F} = \mathbf{E} \mathbf{q}$


If a charge of 1.5 C is placed on an electric field of 15.5 V/m, what is the magnitude of the force on the charge?

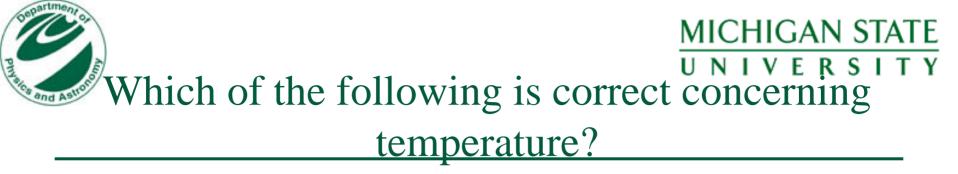
Answer: F = 15.5 N/C x 1.5 C = 23.3 N

Flow of Charge - Current

• Batteries are like pumps that lift charge to a higher potential. The charge flows down the hill to the other side of the battery.

Energy, Work, etc.

- Two kinds of energy: Kinetic energy of motion, Potential – energy of position
- Energy is measured in Joules, J
- Power = Energy/time . The unit is Watts = J/s
- Energy is always conserved. Energy conservation can be used to find how high something will go.
- Work = force x distance, converts energy from one form to another.



MICHIGAN STATE UNIVERSITY

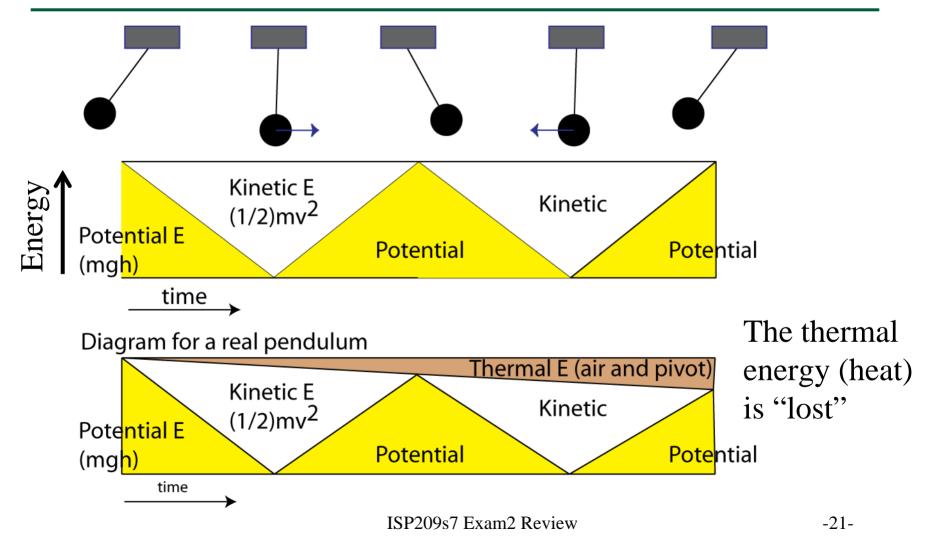
Chemical Energy

- 1 Calorie = 4184 J
- How many Calories are used by a person to lift 200 kg 1m? Assume people are 10% efficient in converting chemical energy to work.

Work = mgh = 200 x 9.81 x 1 = 1962 J Chemical energy=Work/eff=1962J/.1=19620. #Calories = 19620 J/(4184 J/Cal) = 4.69 Cal

- A. The average kinetic energy of molecules in a gas increases at the temperature is increased.
- B. Thermal motion Is highly organized
- C. As a gas is cooled, the molecules more more rapidly.
- D. Temperature is a measure of the average potential energy of atoms.
- E. Temperature is not related to energy.

MICHIGAN STATE UNIVERSITY


Entropy

- Entropy is a measure of the number of possible ways to arrange a system. Which is correct?
- A.Molecules in a gas usually are moving together in the same direction.
- B. The entropy of 10 heads is higher than the entropy of 5 heads and 5 tails.
- C. In all closed systems the entropy never decreases in any process.
- D.We can reduce entropy by adding heat.
- E.We can reduce entropy by adding more coins to a pile.

Energy and Entropy - Pendulum Example

MICHIGAN STATE UNIVERSITY

The Second Law of Thermodynamics

- Which of the following are a statement of the second law of thermodynamics?
- Energy is conserved in a closed system
- The entropy of a system could decrease by external influences
- With no external influence, entropy is conserved
- With no external influence, entropy always increases
- With no external influence, entropy always decreases

Quantum Mechanics Review

- Light can be described as an electromagnetic wave or a little bundle of energy (a photon). Light has particle and wave character.
- Waves can overlap this is called interference
- Particles, for example electrons, have wave and particle properties.
- The thing that is waving in the case of a particle is probability. The square of the height of the wave (wave function) is a measure of the probability density.
- All objects (atoms, molecules, etc.) exist in defined states of energy. The energy is quantized (quantum mechanics)
 ISP209s7 Exam2 Review
 -23-

The Uncertainty Principle

What is the meaning of the Uncertainty Principle?

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$

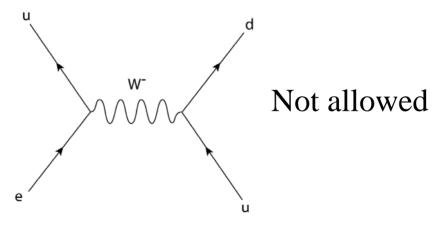
- A. The entropy of a closed system always increases.
- **B.** It is not possible to know the exact position and momentum of a particle at the same time.
- C. It is not possible to ever know the exact position of a particle.
- D. Small objects have a wave function.
- E. Energy is conserved in a closed system.

MICHIGAN STATE UNIVERSITY

Antiparticles and Antimatter

- All particles have a corresponding anti-particle with opposite quantum numbers. We write the anti-particle with a bar over the top, e.g. proton p anti-proton \overline{p}
- Antimatter (matter made of anti-particles) is very difficult to make. It can artificially be produced only at large particle accelerators ("atom smashers").
- Matter and anti-matter are created naturally in pairs
- So far the total amount of antimatter ever produced by humankind is a few grams.

Neutrinos


- Neutrinos are subatomic particles that do not have charge. They only interact via the weak force.
- These are very unusual particles and we still don't know much about their properties. **They have a mass**, but it is so small we have not been able to measure it.
- They account for about 2% of the universe but interact weakly. One light-year of lead would have only a 50% chance of stopping one.

Equations – sort of

Rules for Feynman Diagrams:

1). The number of leptons and baryons must be conserved.

2). Charge must be conserved.

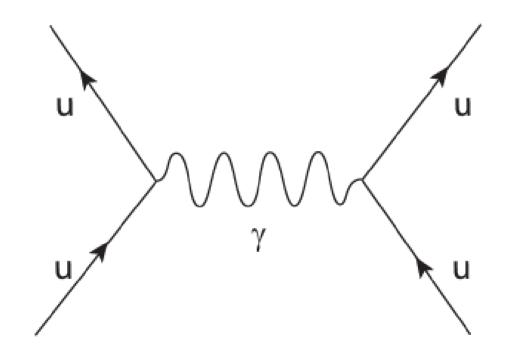
Some examples

Is the following allowed? Production of a quark and anti-quark by a collision of an electron and an anti-electron.

Name	Charge	Lepton	Baryon	
Up quark	-1/3	0	1/3	
Down quard	2/3	0	1/3	
electron	-1	1	0	
neutrino	0	1	0	

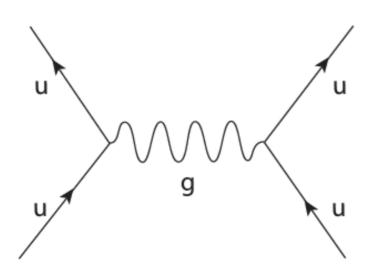
Before	After		
electron +	quark + anti-		
anti-electron	quark		

Some examples


	Before	After	Name	Charge	Lepton	Baryon
	Electron + anti-electron	Quark + anti quark	Up quark	-1/3	0	1/3
		quark	Down	2/3	0	1/3
Baryon	0 + 0	1/3 + (-1/3)	quark			
Lepton	1 + -1	0 + 0	electron	-1	1	0
Charge	-1 + 1	1/3 + (-1/3)	neutrino	0	1	0

allowed

Is this possible?

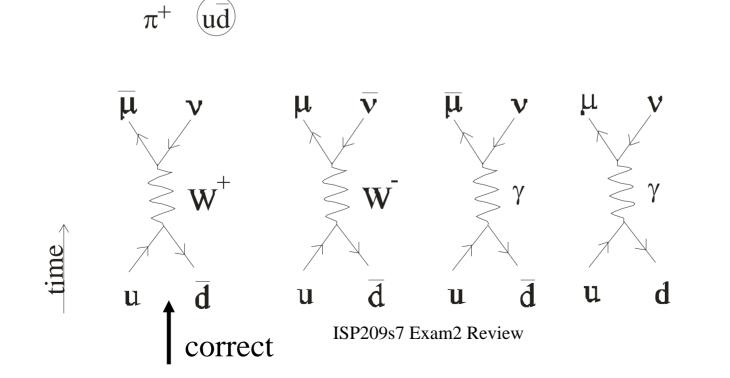


Yes, it is two quarks interacting via the electromagnetic force. Up quarks have electric charge of +2/3.

Force Carriers

- Stong Gluons g
- Weak Intermediate vector bosons Z,W
- Electromagnetic photon γ

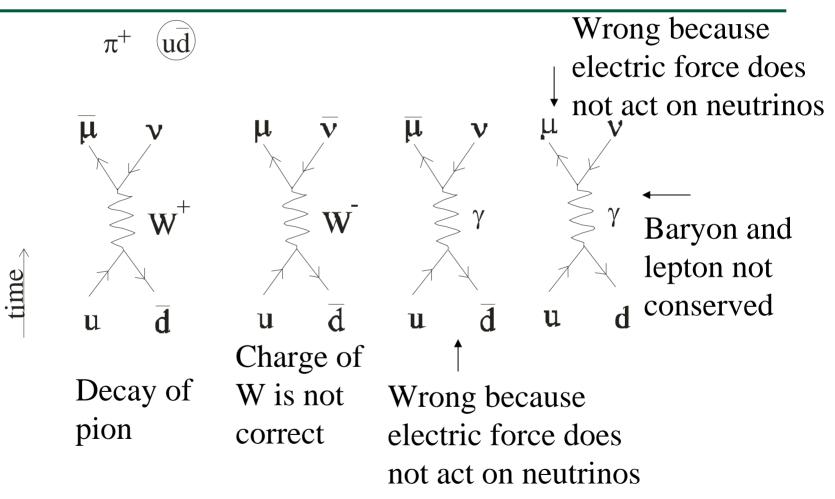
Two quarks interacting via the strong force


MICHIGAN STATE UNIVERSITY

-32-

Feynman Diagrams and rules

Charge, baryon number, and lepton number are conserved


Consider the decay of a +pion into an antimuon by the Weak force. Which diagram describes this process?

Other Examples

