Determining Properties of the Quark-Gluon Plasma from Experiment

Scott Pratt Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory & Facility for Rare Isotope Beams Michigan State University

I. QGP Properties II. Experiments III.Models IV.Phenomenology V. Bayesian Analysis VI.Results

Office of Science

$T_c \approx 160 \text{ MeV} \\ \text{Hadrons} \rightarrow \text{QGP}$

I. QGP Properties **QGP** is Charge Rich!!! 52 colored degrees of freedom 16 gluons 36 quarks: up, down strange, anti-up, anti-down, anti-strange spin 1, spin↓ red,green,blue

~50 particles in one thermal wavelength

Eq. of state

- possibly 1st order ??
- phase separation & critical point ??

Responsible for much of baryon mass

QGP is strongly interacting $_{2.5}$ $n_h(T_c) \approx 0.5 \text{ fm}^3$ $\sigma_{\rm had} \approx 2.5 ~{\rm fm}^2$ 1.5Char. size ≈ 10 fm $2\pi TD$ Low viscosity 1.0- "perfect liquid" - uncertainty limit 0.5P.Danielewicz and M.Gyulassy, PRD(1985)

Low diffusivity

- 1. Eq. of state (B=0 & $B\neq 0$) **P**(n_B,ε) or **P**(μ ,**T**) or c_s²(n_B,ε)... **Quasi-first-order**
- 2. Charge susceptibility $\chi_{ab} = \langle \delta Q_a \delta Q_b \rangle / V$ - describes chemistry
- 3. Quark-antiquark condensate $\langle \bar{\psi}\psi \rangle$ "Chiral symmetry" restoration
- 4. Viscosity response to flow gradient $\delta T_{ij} = -\eta \left[\partial_i v_j + \partial_j v_i - (2/3) \delta_{ij} \nabla \cdot \mathbf{v} \right] - \zeta \nabla \cdot \mathbf{v}$
 - η (shear) and ζ (bulk) remarkably small
- 5. Diffusivity response to density gradient $\mathbf{j}_a = -D_{ab}\nabla\rho_b$ **Poor conductor**

- **1. Eq. of state (B=0 & B≠0) P**(n_B,ε) or **P**(μ ,**T**) or c_s²(n_B,ε)... **Quasi-first-order**
- 2. Charge susceptibility $\chi_{ab} = \langle \delta Q_a \delta Q_b \rangle / V$ - describes chemistry
- **3.** Quark-antiquark condensate $\langle \bar{\psi}\psi \rangle$ "Chiral symmetry" restoration
- 4. Viscosity response to flow gradient $\delta T_{ij} = -\eta \left[\partial_i v_j + \partial_j v_i - (2/3) \delta_{ij} \nabla \cdot \mathbf{v} \right] - \zeta \nabla \cdot \mathbf{v}$ **Not-so-well-determined**

 η (shear) and ζ (bulk) remarkably small

5. Diffusivity — response to density gradient $\mathbf{j}_a = -D_{ab}\nabla\rho_b$ **Poor conductor**

Well-determined by lattice

by lattice

- **1. Eq. of state (B=0 & B≠0)** P(n_B,ε) or P(μ ,T) or c_s²(n_B,ε)... **Quasi-first-order**
- 2. Charge susceptibility $\chi_{ab} = \langle \delta Q_a \delta Q_b \rangle / V$ - describes chemistry
- 3. Quark-antiquark condensate $\langle \bar{\psi}\psi \rangle$ "Chiral symmetry" restoration
- 4. Viscosity response to flow gradient $\delta T_{ij} = -\eta \left[\partial_i v_j + \partial_j v_i - (2/3) \delta_{ij} \nabla \cdot \mathbf{v} \right] - \zeta \nabla \cdot \mathbf{v}$

 η (shear) and ζ (bulk) remarkably small

5. Diffusivity — response to density gradient $\mathbf{j}_a = -D_{ab}\nabla\rho_b$ **Poor conductor**

Experimentally accessible

Pb + Pb E/A=160 GeV

mesons baryons anti-baryons super-hadronic matter

II. Experiments

AGS(11A GeV), SPS(160A GeV), RHIC(100A+100A GeV), LHC(1.4A+1.4A TeV)

1. Pre-equilibrium messy — often parametric 2. Hydrodynamics (QGP, T≥160 MeV) relativistic, viscous, Israel-Stewart eq.s

$\partial_t \pi_{ij} = -\frac{1}{\tau_{IS}} \left(\pi_{ij} - \pi_{ij}^{(NS)} \right) + \cdots$ viscous part of SE tensor

3. Hadron simulation (T≤160 MeV) **Boltzmann sampling**

Also add interfaces, correlation "after-burners"...

III. Models

IV. Phenomenology

As a philosophical movement:

From Wikipedia:

There are several assumptions behind phenomenology that help explain its foundations:

process called phenomenological epoché.

2. They believe that analyzing daily human behavior can provide one with a greater understanding of nature. 3. They assert that persons should be explored. This is because persons can be understood through the unique

- ways they reflect the society they live in.
- 4. Phenomenologists prefer to gather "capta", or conscious experience, rather than traditional data.
- 5. They consider phenomenology to be oriented toward discovery, and therefore they research using methods that are far less restrictive than in other sciences.

To a physicist:

Can be heuristic or semi-quantitative

1.Phenomenologists reject the concept of objective research. They prefer grouping assumptions through a

Experiment (momenta and IDs of tracks) Evolution of ε , P, v, ρ ...

IV. Phenomenology Eq. of State

• Femtoscopic radii Interferometric correlations give shape of phase space cloud for given momentum

• For stiffer Eq. of state **R**_{out}/**R**_{side} decreases (blue to green) Eq. of state also affects spectra multiplicities, elliptic flow...

S.P. and C.Plumberg, PRC(2019)

Suggests low viscosity (close to uncertainty limit) P.Danielewicz and M.Gyulassy, PRD(1985)

IV. Phenomenology Viscosity

Strangeness made early ... kaon separation determined by diffusivity

Many parameters (dozens) — all affect many observables (dozens of plots) to proceed...

- Use all observables y_a Obtain representative sample of posterior

V. Bayesian Analysis

Markov-Chain Monte Carlo Simultaneously vary N model parameters x_i

Difficulties:

- 1. Calculating y_a^(model) is expensive
- 2. Too much data
 - heterogenous, many plots
 - correlated uncertainties

an Analysis

$$\mathcal{L}(\mathbf{x}|\mathbf{y}) \sim \exp\left\{-\sum_{a} \frac{(y_a^{(\text{model})}(\mathbf{x}) - y_a^{(\text{exp})})^2}{2\sigma_a^2}\right\}$$

To address these issues:

Ist MADAI Collaboration Meeting, SANDIA 2010

MADAI Collaboration Models and Data Analysis Initiative (active 2010-2017)

V. Bayesian Analysis

Data Distillation

1.Experiments reduce PBs to 100s of plots

2. Choose which data to analyze **Does physics factorize?**

3.Reduce each plot to a few values, y_a (use principle components)

4. Calculate global principal components, za $\mathcal{L} \sim \exp\left\{\frac{-1}{2}\sum_{a}(z_a - z_a^{(\exp)})^2\right\}$

5. Resolving power of RHIC/LHC data reduced to ≤10 numbers!

V. Bayesian Analysis Checking the Distillation Spectral information encapsulated by two numbers, dN/dy & <pt>

model spectra from 30 random points in parameter prior

74 pion spectra: with 573< $\langle p_t \rangle_{\pi}$ < 575 MeV

44 proton spectra: with 1150< $\langle p_t \rangle_p < 1152~MeV$

Model Emulators

- 1. Run the model ~1000 times Semi-random points (LHS sampling)
- 2. Determine Principal Components $(y_a - \langle y_a \rangle)/\sigma_a \rightarrow z_a$
- 3. Emulate z_a (Interpolate) for MCMC Gaussian Process...

$$\mathcal{L}(\mathbf{x}|\mathbf{y}) \sim \exp\left\{-\frac{1}{2}\sum_{a} (z_a^{(\text{emulator})}(\mathbf{x}) - z_a^{(\text{exp})})\right\}$$

V. Bayesian Analysis

S. Habib,K.Heitman,D.Higdon,C.Nakhleh&B.Williams, PRD(2007)

x (arb)

Gaussian Process Emulator

- Reproduces training points
- Assumes localized Gaussian covariance
- Must be trained,
 i.e. find "hyper parameters"
- Other methods also work

14 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State

V. Bayesian Analysis

30 Observables

- •π,K,p Spectra $\langle p_t \rangle$, Yields
- Interferometric Source Sizes •v₂ Weighted by p_t

Initial State Parameters

$$\epsilon(\tau = 0.8 \text{fm}/c) = f_{\text{wn}}\epsilon_{\text{wn}} + (1 - \epsilon_{\text{wn}} = \epsilon_0 T_A \frac{\sigma_{\text{nn}}}{2\sigma_{\text{sat}}} \{1 - \epsilon_{\text{cgc}} = \epsilon_0 T_{\text{min}} \frac{\sigma_{\text{nn}}}{\sigma_{\text{sat}}} \{1 - \epsilon_{\text{cgc}} = \epsilon_0 T_{\text{min}} \frac{\sigma_{\text{mn}}}{\sigma_{\text{sat}}} \{1 - T_{\text{min}} = \frac{T_A T_B}{T_A + T_B}, T_{\text{max}} \equiv T_A + T_B, u_\perp = \alpha \tau \frac{\partial T_{00}}{2T_{00}}, T_{zz} = \gamma P$$

5 parameters for RHIC, 5 for LHC

V. Bayesian Analysis

 $-f_{\mathrm{wn}})\epsilon_{\mathrm{cgc}},$

 $-\exp\left(-\sigma_{\text{sat}}T_B\right)\} + (A \leftrightarrow B)$

 $-\exp\left(-\sigma_{\mathrm{sat}}T_{\mathrm{max}}\right)$

V. Bayesian Analysis

Equation of State and Viscosity

2 parameters for EoS, 2 for η/s

Review the Grand Plan

- I. Choose observables
- 2. Distill Data
- (Latin hyper-cube sampling)

- 3. Parameterize model 4. Run full model hundreds of times 5. Build & Tune emulator 6. Perform MCMC with emulator 7. Analyze sensitivities

V. Bayesian Analysis

Two Calculations

J.Novak, K. Novak, S.P., C.Coleman-Smith & R.Wolpert, PRC 2014 RHIC Au+Au Data 6 parameters

S.P., E.Sangaline, P.Sorensen & H.Wang, PRL 2015 RHIC Au+Au and LHC Pb+Pb Data 14 parameters, include Eq. of State

Sample Spectra from Prior and Posterior

Sample HBT from Prior and Posterior

Sample v₂ from **Prior and** Posterior

n/s(T)

$\eta/s = (\eta/s)_0 + \kappa \ln(T/165)$ 3.0

Κ

What should you expect for η/s at T=165 MeV?

- ADS/CFT:
- Perturbative QCD: > 0.5 ($\sigma \approx 3 \text{ mb}$)

80.0 • Hadron Gas: $\approx 0.2 (\sigma \approx 30 \text{ mb})$

Extracted η/s at T=165 MeV consistent with expectations for hadron gas!

Does not rise strongly in QGP

3.0

Κ

How does changing $y_{a,exp}$ or σ_a alter $\langle \langle x_i \rangle \rangle$ or $\langle \langle \delta x_i \delta x_i \rangle \rangle$?

From covariances form MCMC trace + linear algebra....

E.Sangaline and S.P., arXiv 2015

 $\frac{1}{\sigma_a} \frac{\partial y_a}{\partial x_i}$

 $\langle \delta y_a \delta y_a \rangle^{1/2} \frac{\partial x_i}{\partial y}$

 $\frac{1}{\sigma_a} \frac{\partial y_a}{\partial x_i}$ $y_{b\neq a}$

 $\langle \delta y_a \delta y_a \rangle^{1/2} \frac{\partial x_i}{2}$ *∂y*

What determines EoS?

- Lots of observables
- Femtoscopic radii are important

What determines viscosity?

- Both v₂ and multiplicities

• T-dependence comes from LHC v₂

<u>S.P., C. Ra</u>

 χ_{ss}/χ_{uu}

ti and W.McCormack, PRC 2016

Early production of u,d,s consistent with equilibrium at 25% level

CONCLUSIONS

- Robust, emulation works splendidly
- Scales well to more parameters & more data
- Eq. of State and Viscosity can be extracted from data
- Eq. of State consistent with lattice gauge theory
- Early chemistry near (~25%) QGP equilibrium
- Heavy-lon Physics can be a Quantitative Science!!!!