Determining Properties of the Quark-Gluon Plasma from Experiment

Scott Pratt
Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory \& Facility for Rare Isotope Beams Michigan State University

I. QGP Properties

II. Experiments
III.Models
IV.Phenomenology
V. Bayesian Analysis
VI.Results

FRIB

Office of
Science

I. QGP Properties

$\mathrm{T}_{\mathrm{c}} \approx 160 \mathrm{MeV}$ Hadrons \rightarrow QGP

I. QGP Properties

QGP is Charge Rich!!!

52 colored degrees of freedom
16 gluons
36 quarks:
up, down strange,
anti-up, anti-down, anti-strange
spin \uparrow, spin \downarrow
red,green, blue
~50 particles in one thermal wavelength

I. QGP Properties

Eq. of state

- possibly $1^{\text {st }}$ order ??
- phase separation \& critical point ??

I. QGP Properties

$\mathrm{T}[\mathrm{MeV}] \quad$ Responsible for much of baryon mass

I. QGP Properties

QGP is strongly interacting

$$
\begin{aligned}
n_{h}\left(T_{c}\right) & \approx 0.5 \mathrm{fm}^{3} \\
\sigma_{\mathrm{had}} & \approx 2.5 \mathrm{fm}^{2}
\end{aligned}
$$

Char. size $\approx 10 \mathrm{fm}$

- Low viscosity
- "perfect liquid"
- uncertainty limit
P.Danielewicz and M.Gyulassy, PRD(1985)
- Low diffusivity

I. QGP Properties

1. Eq. of state $(B=0 \& B \neq 0)$
$\mathbf{P}\left(n_{B}, \varepsilon\right)$ or $\mathbf{P}(\mu, T)$ or $\mathbf{C}_{s}^{2}\left(n_{B}, \varepsilon\right) \ldots$
Quasi-first-order
2. Charge susceptibility
$\chi_{a b}=\left\langle\delta Q_{a} \delta Q_{b}\right\rangle / V$ - describes chemistry
3. Quark-antiquark condensate $\langle\bar{\psi} \psi\rangle$ "Chiral symmetry" restoration
4. Viscosity - response to flow gradient $\delta T_{i j}=-\eta\left[\partial_{i} v_{j}+\partial_{j} v_{i}-(2 / 3) \delta_{i j} \nabla \cdot \mathbf{v}\right]-\zeta \nabla \cdot \mathbf{v}$ η (shear) and ς (bulk) remarkably small
5. Diffusivity - response to density gradient
$\mathbf{j}_{a}=-D_{a b} \nabla \rho_{b}$
Poor conductor

I. QGP Properties

1. Eq. of state $(B=0 \& B \neq 0)$
$\mathbf{P}\left(n_{B}, \varepsilon\right)$ or $\mathbf{P}(\mu, T)$ or $\mathbf{C}_{s}{ }^{2}\left(n_{B}, \varepsilon\right) \ldots$

Quasi-first-order
2. Charge susceptibility $\chi_{a b}=\left\langle\delta Q_{a} \delta Q_{b}\right\rangle / V$ - describes chemistry
3. Quark-antiquark condensate $\langle\bar{\psi} \psi\rangle$
"Chiral symmetry" restoration
4. Viscosity - response to flow gradient $\delta T_{i j}=-\eta\left[\partial_{i} v_{j}+\partial_{j} v_{i}-(2 / 3) \delta_{i j} \nabla \cdot \mathbf{v}\right]-\zeta \nabla \cdot \mathbf{v}$ η (shear) and ς (bulk) remarkably small

Well-determined by lattice

Not-so-well-determined by lattice
5. Diffusivity - response to density gradient
$\mathbf{j}_{a}=-D_{a b} \nabla \rho_{b}$
Poor conductor

I. QGP Properties

1. Eq. of state $(B=0 \& B \neq 0)$
$\mathbf{P}\left(n_{B}, \varepsilon\right)$ or $\mathbf{P}(\mu, T)$ or $C_{s}{ }^{2}\left(n_{B}, \varepsilon\right) \ldots$
Quasi-first-order
2. Charge susceptibility $\chi_{a b}=\left\langle\delta Q_{a} \delta Q_{b}\right\rangle / V$ - describes chemistry

Experimentally accessible
3. Quark-antiquark condensate $\langle\bar{\psi} \psi\rangle$ "Chiral symmetry" restoration
4. Viscosity - response to flow gradient $\delta T_{i j}=-\eta\left[\partial_{i} v_{j}+\partial_{j} v_{i}-(2 / 3) \delta_{i j} \nabla \cdot \mathbf{v}\right]-\zeta \nabla \cdot \mathbf{v}$ η (shear) and ς (bulk) remarkably small
5. Diffusivity - response to density gradient $\mathbf{j}_{a}=-D_{a b} \nabla \rho_{b}$
Poor conductor

II. Experiments

AGS(11A GeV), SPS(160A GeV), RHIC(100A+100A GeV), LHC(1.4A+1.4A TeV)

III. Models

1. Pre-equilibrium messy - often parametric
2. Hydrodynamics (QGP, $T \geqslant 160 \mathrm{MeV}$) relativistic, viscous, Israel-Stewart eq.s
$\partial_{t} \pi_{i j}=-\frac{1}{\tau_{I S}}\left(\pi_{i j}-\pi_{i j}^{(\mathrm{NS})}\right)+\cdots$
viscous part of SE tensor
3. Hadron simulation ($T \leqslant 160 \mathrm{MeV}$)

Boltzmann sampling

Also add interfaces, correlation "after-burners"...

IV. Phenomenology

As a philosophical movement:

From Wikipedia:
There are several assumptions behind phenomenology that help explain its foundations:
1.Phenomenologists reject the concept of objective research. They prefer grouping assumptions through a process called phenomenological epoché.
2. They believe that analyzing daily human behavior can provide one with a greater understanding of nature.
3.They assert that persons should be explored. This is because persons can be understood through the unique ways they reflect the society they live in.
4.Phenomenologists prefer to gather "capta", or conscious experience, rather than traditional data.
5.They consider phenomenology to be oriented toward discovery, and therefore they research using methods that are far less restrictive than in other sciences.

To a physicist:
 - Experiment (momenta and IDs of tracks)
 Evolution of $\varepsilon, \mathrm{P}, \mathrm{v}, \rho \ldots$
 - Can be heuristic or semi-quantitative

IV. Phenomenology
 Eq. of State

- Femtoscopic radii
- Interferometric correlations give shape of phase space cloud for given momentum

- For stiffer Eq. of state $R_{\text {out }} / R_{\text {side }}$ decreases (blue to green)
- Eq. of state also affects spectra multiplicities, elliptic flow...
IV. Phenomenology

$C_{a b}\left(t, \mathbf{r}_{1}, \mathbf{r}_{2}\right)=\left\langle\delta \rho_{a}\left(t, \mathbf{r}_{1}\right) \delta \rho_{b}\left(t, \mathbf{r}_{2}\right)\right\rangle$ $\partial_{t} C_{a b}+\nabla_{1} \cdot\left(\mathbf{v}_{1} C_{a b}\right)+\nabla_{2} \cdot\left(\mathbf{v}_{2} C_{a b}\right)$

$$
-D \nabla_{1}^{2} C_{a b}-D \nabla_{2}^{2} C_{a b}=S_{a b}\left(t, \mathbf{r}_{1}\right) \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$ Susceptibility

IV. Phenomenology
 Viscosity

$$
v_{2} \equiv\langle\cos 2 \phi\rangle
$$

Suggests low viscosity (close to uncertainty limit)

P.Danielewicz and M.Gyulassy, PRD(1985)

IV. Phenomenology — Diffusivity

Strangeness made early
\therefore kaon separation determined by diffusivity

V. Bayesian Analysis

Many parameters (dozens)
 — all affect many observables (dozens of plots) to proceed...

Markov-Chain Monte Carlo

- Simultaneously vary \mathbf{N} model parameters x_{i}
- Perform random walk weight by likelihood

$$
\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\sum_{a} \frac{\left(y_{a}^{(\text {model })}(\mathbf{x})-y_{a}^{(\exp)}\right)^{2}}{2 \sigma_{a}^{2}}\right\}
$$

- Use all observables y_{a}
- Obtain representative sample of posterior

V. Bayesian Analysis

$$
\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\sum_{a} \frac{\left(y_{a}^{(\text {model })}(\mathbf{x})-y_{a}^{(\mathrm{exp})}\right)^{2}}{2 \sigma_{a}^{2}}\right\}
$$

Difficulties:

1. Calculating $y_{a}($ model $)$ is expensive
2. Too much data

- heterogenous, many plots
- correlated uncertainties

V. Bayesian Analysis

To address these issues:

MADAI Collaboration

Models and Data Analysis Initiative (active 2010-2017)

Ist MADAI Collaboration Meeting, SANDIA 2010

V. Bayesian Analysis

Data Distillation

1.Experiments reduce PBs to 100s of plots

2.Choose which data to analyze Does physics factorize?
3. Reduce each plot to a few values, ya (use principle components)
4.Calculate global principal components, za_{a}

$$
\mathcal{L} \sim \exp \left\{\frac{-1}{2} \sum_{a}\left(z_{a}-z_{a}^{(\exp)}\right)^{2}\right\}
$$

5.Resolving power of RHIC/LHC data reduced to $\leqslant 10$ numbers!

V. Bayesian Analysis

Model Emulators

1. Run the model ~1000 times Semi-random points (LHS sampling)
2. Determine Principal Components

$$
\left(y_{a}-\left\langle y_{a}\right\rangle\right) / \sigma_{a} \rightarrow z_{a}
$$

3. Emulate z_{a} (Interpolate) for MCMC Gaussian Process...
$\mathcal{L}(\mathbf{x} \mid \mathbf{y}) \sim \exp \left\{-\frac{1}{2} \sum_{a}\left(z_{a}^{(\text {emulator) })}(\mathbf{x})-z_{a}^{(\text {(exp })}\right)^{2}\right\}$

S. Habib,K.Heitman,D.Higdon,C.Nakhleh\&B.Williams,

V. Bayesian Analysis

Gaussian Process Emulator

- Reproduces training points
- Assumes localized Gaussian covariance
- Must be trained, i.e. find "hyper parameters"
- Other methods also work

14 Parameters

- 5 for Initial Conditions at RHIC
- 5 for Initial Conditions at LHC
- 2 for Viscosity
- 2 for Eq. of State

30 Observables

$\cdot \pi, \mathrm{K}, \mathrm{p}$ Spectra
$\left\langle\mathbf{p}_{\mathbf{t}}\right\rangle$, Yields

- Interferometric Source Sizes
${ }^{-} \mathrm{v}_{2}$ Weighted by p_{t}

Initial State Parameters

V. Bayesian Analysis

$$
\begin{aligned}
\epsilon(\tau=0.8 \mathrm{fm} / c) & \left.=f_{\mathrm{wn}}\right) \epsilon_{\mathrm{wn}}+\left(1-f_{\mathrm{wn}}\right) \epsilon_{\mathrm{cgc}}, \\
\epsilon_{\mathrm{wn}} & =\epsilon_{0} T A \frac{\sigma_{\mathrm{nn}}}{2 \sigma_{\mathrm{sat}}}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{B}\right)\right\}+(A \leftrightarrow B) \\
\epsilon_{\mathrm{cgc}} & =\epsilon_{0} T_{\min } \frac{\sigma_{\mathrm{mn}}}{\sigma_{\mathrm{sat}}}\left\{1-\exp \left(-\sigma_{\mathrm{sat}} T_{\mathrm{max}}\right)\right\} \\
T_{\min } & \equiv \frac{T_{A} T_{B}}{T_{A}+T_{B}}, \\
T_{\max } & \equiv T_{A}+T_{B}, \\
u_{\perp} & =\alpha \tau \frac{\partial T_{00}}{2 T_{00}} \\
T_{z z} & =\gamma P
\end{aligned}
$$

5 parameters for RHIC, 5 for LHC

V. Bayesian Analysis

Equation of State and Viscosity

$$
\begin{aligned}
c_{s}^{2}(\epsilon) & =c_{s}^{2}\left(\epsilon_{h}\right) \\
& +\left(\frac{1}{3}-c_{s}^{2}\left(\epsilon_{h}\right)\right) \frac{X_{0} x+x^{2}}{X_{0} x+x^{2}+\left(X^{\prime 2}\right.}, \\
X_{0} & =X\left(R g_{s}(\epsilon) \sqrt{12},\right. \\
x & \equiv \ln \epsilon / \epsilon_{h}
\end{aligned}
$$

$$
\frac{\eta}{s}=\left(\left.\frac{\eta}{s}\right|_{T=16.5}+\kappa \ln (T / 165)\right.
$$

2 parameters for EoS, 2 for η / s

V. Bayesian Analysis

Review the Grand Plan

I. Choose observables
2. Distill Data
3. Parameterize model
4. Run full model hundreds of times (Latin hyper-cube sampling)
5. Build \& Tune emulator
6. Perform MCMC with emulator
7. Analyze sensitivities

VI. RESULTS

Two Calculations

J.Novak, K. Novak, S.P., C.Coleman-Smith \& R.Wolpert, PRC 2014 RHIC Au+Au Data

6 parameters

S.P., E.Sangaline, P.Sorensen \& H.Wang, PRL 2015

RHIC Au+Au and LHC Pb+Pb Data 14 parameters, include Eq. of State

Sample Spectra from Prior and Posterior

Sample HBT from Prior and Posterior

Constraining Eq. of State with RHIC/LHC Data (MADAI Collab.)

What should you expect for η / \mathbf{s} at $T=165 \mathrm{MeV}$?

- ADS/CFT: 0.08
- Perturbative QCD: > 0.5 ($\sigma \approx 3 \mathrm{mb}$)
- Hadron Gas: $\quad \approx 0.2(\sigma \approx 30 \mathrm{mb})$

Extracted η / s at $T=165$ MeV consistent with expectations for hadron gas!

Does not rise strongly
in QGP
Does not rise strongly
in QGP

RESOLVING POWER OF OBSERVABLES

How does changing $y_{a, \exp }$ or σ_{a} alter $\left\langle\left\langle\mathbf{x}_{\mathrm{i}}\right\rangle\right\rangle$ or $\left\langle\left\langle\delta x_{i} \delta x_{j}\right\rangle\right\rangle$?

$$
\text { We need } \frac{\partial}{\partial y_{a}^{(\exp)}}\left\langle\left\langle x_{i}\right\rangle\right\rangle \text { NOT } \frac{\partial}{\partial x_{i}} y_{a}^{(\bmod)}
$$

From covariances form MCMC trace + linear algebra....
$\left\langle\left\langle\partial y_{a} / \partial x_{i}\right\rangle\right\rangle / \sigma_{a}$

$$
\left.\left\langle\delta y_{a} \delta y_{a}\right\rangle^{1 / 2} \frac{\partial x_{i}}{\partial y_{a}}\right|_{y_{b \neq a}}
$$

$$
\left.\left\langle\delta y_{a} \delta y_{a}\right\rangle^{1 / 2} \frac{\partial x_{i}}{\partial y_{a}}\right|_{y_{b \neq a}}
$$

What determines EoS?

- Lots of observables
- Femtoscopic radii are important

What determines viscosity?

- Both V_{2} and multiplicities
- T-dependence comes from LHC v_{2}

Early production of u,d,s consistent with equilibrium at 25% level

$\chi_{s s} / \chi_{u u}$

$\operatorname{Tr} \chi / s$

CONCLUSIONS

- Robust, emulation works splendidly
- Scales well to more parameters \& more data
- Eq. of State and Viscosity can be extracted from data
- Eq. of State consistent with lattice gauge theory
- Early chemistry near (~25\%) QGP equilibrium
- Heavy-Ion Physics can be a Quantitative Science!!!!

