# PHY 852 - Notes on Chapter 8: Scattering at Lower Energies 

Aymeric McRae and Victor Rosolem

April 2022

We begin by writing the plane wave solutions in terms of the spherical Bessel Functions

$$
\begin{equation*}
e^{i \vec{k} \cdot \vec{r}}=\sum_{l}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \tag{1}
\end{equation*}
$$

After manipulating and using the properties of the spherical Bessel functions, we end up with radial solutions for spherical symmetries

$$
\begin{equation*}
R_{l}(k, r)=\frac{1}{2}\left(e^{2 i \delta_{l}} h(k r)+h_{l}^{*}(k r)\right) \tag{2}
\end{equation*}
$$

Where $\delta_{l}$ is the phase shift due to the scattering and $h(k r)$ is spherical Henkel functions.
The wavefunction is then a linear combination of equation (1)

$$
\begin{align*}
\psi_{l}(\vec{r}) & =\sum_{l}(2 l+1) i^{l} R_{l}(k, r) P_{l}(\cos \theta)  \tag{3}\\
& =e^{i \vec{k} \cdot \vec{r}}+\sum_{l}(2 l+1)\left(R_{l}(k, r)-j_{l}(k r)\right) P_{l}(\cos \theta) \tag{4}
\end{align*}
$$

Computing $\left.\psi_{l}(\vec{r})\right|_{r \rightarrow \infty}$

$$
\begin{equation*}
\left.\psi_{l}(\vec{r})\right|_{r \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\sum_{l}(2 l+1) e^{i \delta_{l}} \sin \left(\delta_{l}\right) \frac{e^{i k r}}{k r} P_{l}(\cos \theta) \tag{5}
\end{equation*}
$$

We then define the scattering amplitude with units of length as

$$
\begin{equation*}
f(\Omega) \equiv \sum_{l}(2 l+1) e^{i \delta_{l}} \frac{\sin \left(\delta_{l}\right)}{k} P_{l}(\cos \theta) \tag{6}
\end{equation*}
$$

Our wavefunction then becomes

$$
\begin{equation*}
\left.\psi_{l}(\vec{r})\right|_{r \rightarrow \infty}=e^{i \vec{k} \cdot \vec{r}}+\frac{e^{i k r}}{r} f(\Omega) \tag{7}
\end{equation*}
$$

We can now relate the differential cross section to the flux of particles per solid angle, where $v$ is the velocity and $V$ is the volume.

$$
\begin{align*}
\frac{v}{V} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} & =\frac{d N}{d \Omega d t}  \tag{8}\\
\frac{v}{V} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} & =\frac{v}{V} \frac{|f(\omega)|^{2}}{r^{2}}  \tag{9}\\
\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} & =|f(\Omega)| \tag{10}
\end{align*}
$$

By solving this differential equation for the total cross section $\sigma$, we get

$$
\begin{equation*}
\sigma=\frac{4 \pi}{k^{2}} \sum_{l}(2 l+1) \sin ^{2}\left(\delta_{l}\right) \tag{11}
\end{equation*}
$$

It is important to know that for small energies $\sin (k a) \approx k a$. So the total cross section for small momenta is

$$
\begin{equation*}
\sigma=\frac{4 \pi}{k^{2}} \sin ^{2}(\delta) \approx 4 \pi a^{2} \tag{12}
\end{equation*}
$$

