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We begin by writing the plane wave solutions in terms of the spherical Bessel Functions
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After manipulating and using the properties of the spherical Bessel functions, we end up with radial solutions for spherical
symmetries

Ri(k,r) = %(emlh(kr) + hi(kr)) (2)

Where §; is the phase shift due to the scattering and h(kr) is spherical Henkel functions.
The wavefunction is then a linear combination of equation (1)
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We then define the scattering amplitude with units of length as
F(Q) = El:(zz +1)ei Smé‘s ) Py(cos ) (6)
Our wavefunction then becomes .
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We can now relate the differential cross section to the flux of particles per solid angle, where v is the velocity and V is
the volume.
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By solving this differential equation for the total cross section o, we get
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Tt is important to know that for small energies sin(ka) = ka. So the total cross section for small momenta is
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