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WKB approximation

Classical region:

e Define p(x) = \/Qm(E —~V(z)
e \We have a wavefunction of the
form:
dwrn(@) = Ape?® 4 A_e~i4@)

o@) =3 [ dp(@)

e Between two turning points we
should have

¢(a) =7/2
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WKB approximation

Tunnelling region:

e Define q(z) = /2m(V(z) — E)
e \We have a wavefunction of the
form:
Ywip(T) = Are®® + A_e ¢
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e Calculate tunneling probability:

P, =~ exp {—% /:d:c\/2m(V(z) - E)}
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Variational Theory

e If you have some Hamiltonian, chose a (normalized) trial wave function that
has a parameter you can vary, ex: @)= \/%e"/“

e (alculate the expectation value of the Hamiltonian and minimize with respect
to the variable parameter: %www) =0

e Use this value of your variable parameter (here it is a) to get an estimate of

the energy
e This method always leads to an overestimation of the energy




Sudden approximation

e [f a system changes very rapidly from one Hamiltonian to another, at t=0 in
the new potential landscape it will be in the same state as it was previously

e This is different than a slow/adiabatic transition from one Hamiltonian to
another, where you allow for a system to relax to its ground state with every

infinitesimal step
e In the adiabatic case, a system will stay in the ground state



Time-independent perturbation theory

e Consider a Hamiltoniar #, with known eigenstates |n) with energy €,

e Add a small perturbation H = Ho+V

e The first order correction to the energy can be solved for using the
eigenstates of Hy:

= (Yn| H |¢n)
e First order corrections to wavefunction'
0 H
m#n
e Second order corrections:
-y I<¢° IHI¢°>I
E()



Fermi’s Golden Rule

e We have utilized the interaction picture to formulate time-dependant
perturbation theory.

e If we have a time-independent potential that is either is slowly turned on or off,
considering only up to first order perturbation theory, we get the Fermi’s
Golden Rule:

27 0
B s (t) = ?anzl O(en — €;)



Quick Reminders

In order to transform summations to integrals _>£/°° s, onErimennie
we need to multiply by the density of states: « B s

A oo
Z —y / d*k, two dimensions,
(2m)*

k — 00

Q
Z — / d3k, three dimensions.
- (2m)?

Also, to be able to integrate the delta k= df = dE,
. . . . dE /dk hv
function, the integration variable needs to be m "
= dE——, non — relativistic,
converted from momentum to energy: h
— dE%, relativistic,
_dE

= ——, massless.
c



Harmonic Perturbations

If we have instead a harmonically time-dependant potential, we can write it

: i ; ;
as (n|Vs(t)|m) = Vpme™ cos(wt) = EVnme"t (" &),

Thus, it is basically the same situation we had in the derivation of the Fermi’'s
golden rule, but now the phases can be absorbed inside the time evolution
phase, leading to:

d 27 | Vi |

= L [B(en — €+ ) + (e — € — )]

The cosine is no longer part of V!
Don’t forget the factor of 1/4 since it is not in the formula sheet.
Consider only the delta function of the allowed transition.



Example 6.7 from the lecture notes:

Consider a particle of mass m in the ground state of a  function potential,
Vo(z) = —B6(x)
The particle feels a harmonic potential
V(t) = eEx cos(wt), hw > |G.S. energy|

Estimate the ionization rate using first-order perturbation theory. To simplify the problem,
assume the outgoing momentum is high enough that the outgoing wave can be treated as a
plane wave, i.e. the corrections due to the delta function potential are small. This is a one-
dimensional example that has much in common with radiative excitation.



e First, we write down the initial state (the bound state of the delta function
potential) and the final state (here, free electrons), and their energies:

Po(x) = f ~alxl g =

_ \/Zm(hw B) h2q?

h2 where B = —

lpk(x) = \/Z

e \We should have used the scattering state of the delta function as a final
state, but we are making the approximation that the final state does not feel

the interaction.



e Second, we calculate the interaction matrix elements:

Vo = i/d:l: eExe e dlel
V 2L
= —ieE”i /dm x sin(kx)e 4@l
2L
[q d
= ieFE i—/da: cos(kx)e
2L dk
. [q d { 1 1
= 1eFE — 4+ -
2Ldk \q+ 11k q— ik

2 2kq®/?
L (q2 L kz)z'

= eF

e Note that the cosine was not included!



Finally, apply the Fermi’s golden rule and summing over all possible final
states:

T Ldk
— Viol?8 — hw — B
2h_/ o | Ie0| (Gk )

1Bk g 4

" h(q? + k2)4 |dey/dK|
Am e?E?kq®

- K3 (q2+k2)4.

We picked a factor of 1/4 due to the Harmonic perturbation.

Only one delta function contributed to the transition which corresponds to
final energies larger than the initial bound energy.

We also picked a factor of 2 since we have two final states with opposite
momentum.




