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Chapter 9 Subject Exam Prep

August 2020 subject exam, Problem 5 Consider a ONE-DIMENSIONAL world,
where a non-relativistic particle of mass M is in the ground state of a harmonic os-
cillator characterized by frequency ω0. The harmonic oscillator is in a large box of
length L which is populated by a bath of massless particles. The probability that any
given state in the box is occupied is f(k), where k is the wave number of the massless
particle. The harmonic oscillator can be excited to the first excited state via the weak
coupling,

V = g

∫
dxΨ†(x) xΨ(x)Φ(x),

where Ψ is the field operator for the massive particle and [Ψ(x, t),Ψ†(x′, t)] = δ(x−x′),
and Φ is the field operator for the massless particle,

Φ(x, t) =
∑
k

1√
2EkL

[
ake

−iωt+ikx + a†ke
iωt−ikx

]
[ak, a

†
k′ ] = δkk′ .

Using Fermi’s golden rule, and using the dipole approximation, find the rate at which
the massive particle is excited to the first excited state from the ground state. Your
answer should be in terms of m, ω0, g, and f(k).

Solution.
One must first recognize that this problem can be solved using Fermi’s golden rule, which is
written as follows:

Γ =
2π

ℏ
∑
k

f(k)|M|2 δ(ϵ1 − ϵ0 − ϵk) (1)

Where f(k) is the probability that any given momentum state in the box is occupied, ϵ0 and
ϵ1 are the energies of the ground state and first excited state harmonic oscillator, respectively,
and ϵk is the energy of the outgoing massless particle. M is the matrix element

M = ⟨ψ1|V |ψ0, k⟩, (2)

where |ψ1⟩ is the final state and |ψ0, k⟩ is the initial state. We will begin by calculating this
matrix element. To do this, we want to think about the contents of the coupling potential,
V . One can see how the field operators act on the initial and final states.

⟨ψ1|Ψ†(x)Ψ(x)Φ(x)|ψ0, k⟩ = ψ∗
1(x)ψ0(x) ⟨0|Φ(x)|k⟩ = ψ∗

1(x)ψ0(x) e
ikx 1√

2EkL
, (3)

where ψ1(x) and ψ0(x) are the first excited harmonic oscillator and the ground state harmonic
oscillator wavefunctions, respectively. In the above equation, the Ψ†(x) and Ψ(x) operators
act on the single-particle states |ψ1⟩ and |ψ0⟩, respectively. They go by the following relation:

Ψ(x) |ψi⟩ = ψi(x) |0⟩
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The field operator for the massless particle, Φ(x), acts on the initial state, |k⟩. Inspecting
Φ(x, t), we notice that the a†k term does not contribute, so we leave off that part. This gives
us the following:

Φ(x)|k⟩ = eikx
1√
2EkL

|0⟩ (4)

Now, we can apply our above work to the integral for V . After plugging in equations 3 and
4 into equation 2, we get

M = g

∫
dx eikxψ∗

1(x) x ψ0(x)
1√
2EkL

.

Now is the time for our use of the dipole approximation. This approximation allows us to
assume a small kx, or in other words, assuming that the emitted photon has a very long
wavelength compared to the size of the emitter(atom). Maybe it should be named the ”long
wavelength approximation” instead! The dipole approximation, then, allows us to say

eikx ≈ 1

Which, in turn, simplifies our matrix element integral!

M = g

∫
dx ψ∗

1(x) x ψ0(x)
1√
2EkL

.

We can simplify our integral even further by realizing that we have the position operator,
X , sandwiched between single particle harmonic oscillator wave functions ψ1(x) and ψ0(x).
This can be rewritten as ⟨1|X |0⟩. We can write the position operator in terms of the single
particle creation and destruction operators that we are familiar with,

X =

√
ℏ

2mω0

(a+ a†)

Plugging this back into ⟨1|X |0⟩, we get

⟨1|X |0⟩ =
√

ℏ
2mω0

⟨1|(a+ a†)|0⟩ =
√

ℏ
2mω0

Now plugging this equation back into our matrix element, we get

M =
g√
2EkL

√
ℏ

2mω0

(5)

leading to the squared matrix element,

|M|2 = g2ℏ
4EkLmω0

(6)

After finding the squared matrix element, we can insert it into Fermi’s Goden Rule to
estimate the decay rate.

Γ =
g2π

2Lmω0

∑
k

f(k)

Ek

δ(ℏc|k| − ℏω0)
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We can then transform the sum over momentum states to an integral, remembering to add
a factor of L/2π to account for the density of states, to get

Γ =
g2π

2Lmω0

L

2π

∫ ∞

−∞

f(k)

Ek

δ(ℏc|k| − ℏω0)dk =
g2

4mω0

∫ ∞

−∞

f(k)

Ek

δ(ℏc|k| − ℏω0)dk

We then perform a change of variables to integrate over energy states instead. In this step,
because ℏc|k| = ℏω0 has two solutions, we add a factor of two. This accounts for a massless
particle of momentum states of both -k and k.

Γ =
g2

2mω0

∫ ∞

0

f(k)

Ek

1

dEk/dk
δ(Ek − ℏω0)dEk

Simplifying,

Γ =
g2

2mω0ℏc

∫ ∞

0

f(k)

Ek

δ(Ek − ℏω0)dEk

The integral evaluates to (f(k)/Ek)|Ek=ℏω0 , or equivalently, where k = ω0/c, so

Γ =
g2

2mω2
0ℏ2c

f(ω0/c) (7)

You can check the units of g to be [mass]1.5 [length]2.5 [time]−3, and verify that Γ has units
of [time]−1.
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