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Basics of States and Operators

e Finite (e.g two component) systems, have a discrete number states, while other systems may have an infinite number. An
orthonormal basis can be formed, any physical state of the system can be expressed as a linear combination of its members:
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e  The bra notation is shown first. Ket adjoint vectors are their complex transposes.
e  States are normalized to have unit squares: (Yl) = Z a;a; =1
)

e The squared overlap between two states gives the probability of observing a second state from an initial prepared state:
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e  Operators act on functions/vectors to return transformed functions. We can express an operator in terms of its expectation for a
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pair of basis states:



Basics of Two Component Systems

e  Consider the identity, and the Pauli matrices, & = (05, 0y,0;) :
1— 10 o — 01 o — 0 —2 o — 1 0
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e  Together, the set forms a complete, unitary basis for the space of 2x2 matrices. This basis in commonly used to describe spin-
half systems (a two-component system in three space). Note, 0i0j = d; j + €3k 0k . Spin-up and spin-down states are

1) = [(1)] 1) = m

e  Rotations of such states in the spin-half system are expressed out by a Taylor expansion:

expressed as:
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e Alternately, rotations of two-component systems in two space can be expressed: R(¢) = [ 0o p
sing cos

] = COS ¢ — 10y Sin ¢
e  One example of rotations in a 2D plane is the transformation of polarized fields

about the direction of propagation (worth reviewing polarization naming conventions).



Example Problem 1: Two Component Neutrino Mixing

e A common application of two-state mixing is the atmospheric neutrino problem. Ground-based instruments have observed a
deficit in the rate of muon neutrinos. As the rate of electron neutrinos was near expected, Yy — V7 must occur.
e  We can introduce a Hamiltonian for these two observed states, and add in an additional mixing term:
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e This gives new Hamiltonian with different neutrino eigen-energies and eigen-states than those observed. What are these new

eigen-energies, and probabilities P(numu — nutau), P(humu — numu), as a function of time?
e Begin by expressing H in terms of Pauli matrices:
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e To diagonalize, , note the triplet of Pauli matrices rotates as (X, y, X).

e Form an analogue vector of magnitude and direction from projections along the Pauli matrices:
n = (a,0,(m, —m)/2)/8
1

H = §(m,u +m,)1+ B(6 1)

e  Scalar eigen-energies are maintained under the transformation/rotation of Pauli matrices. Rotating along the (diagonalized) z

direction,
1
H = §(m“ +m;)1 + fo,

(my +m:)/2+ B 0
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e (Can now read eigen-energies for the neutrino mass eigenstates from the diagonal.
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The evolution operator for time-independent Hamiltonians is, U=e
Unitary transformation, so basis is transformed but maintained as orthonormal.

U(t) = exp{—it(m, + m.)1/(2k) — it3(d - 1) /h}
= exp{—it(m, +m.)/(2h)}(cos(Bt/h)1 — id' - nsin(St/h))
— exp{it(m, + my)/ (2R} (cos(Bt/ W)L — (i/B)(ars + (m, — mr)r./2) sin(Bt/ ).

The probability of a specific oscillation is found by evolving the first state, and considering the squared projection onto the
second:

U ) = [0 1)U |
— [0 1] exp{—it(m, + m)/ W) (~(i/ 8o sin(pt/) |
= exp{—it(my + m.)/(2h) }(—(i/B)asin(Bt/h))
The expectation of observing numu after time t is found similarly.

Py, = v;) = a? sin2(ﬁt/h)/ﬁ2,
P(v — vy) = (my + mo)? sin(8/1)/(462) + cos2(8t/)

Nice overview of two flavor neutrino oscillation formalism:
https://warwick.ac.uk/fac/sci/physics/staff/academic/boyd/warwick week/neutrino_physics/lec_oscillations.pdf



Basics of Density Matrices

e  States can be described by a density matrix:

py = [¥)(¥|

e Density matrices are sufficient to generate all observables using:
(WlAIY) =) ¥ Ay
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e  The trace of any product of matrices is invariant to unitary transformations, so the formulas above work regardless of basis (see

example problem)



Example Problem 2: Density Matrices

Fall 1998 Final

1. (15 pt.s) Consider a spin 1/2 system. The projection operator P, projects the component of
the wave function that has positive spin along the z axis.

(n|P:|m) = {2, 1 |n)[

. . . 1
(a) Express P, as a matrix in the basis where (

0 ) denotes a state with positive spin along

the z axis.

(b) Write down the density matrix for a state that is an incoherent mixture of 50% positive
spin along the y axis and 50% negative spin along the y axis.

(c) If the Hamiltonian is defined as:
H=a+ fo,

Calculate the expectation of H for the state described in b.
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(a) Express P, as a matrix in the basis where (

the z axis.

P. = |z,1)z.1] = ((')) (1 0)

1 0
2= (0 0)
Check; (r)|P:|r)) — |<3T |,’>|2

In)=(‘;)
|P-ln) = (a b) ((‘) g) (b) a2

(=t =(1 0) (b) —a
et




(b) Write down the density matrix for a state that is an incoherent mixture of 50% positive
spin along the y axis and 50% negative spin along the y axis.

1 1
p= §Iy.T)(y.T | + §|y-i)(y-i |

2 ways:

wn=(0)  wo=(3) wh=25(}) v =25 (L)
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(c) If the Hamiltonian is defined as:
H=a+ fo,

Calculate the expectation of H for the state described in b.
Shortway: (H) = Tr(pH)
Tr(pH) = aTr(p) + Tr(po)
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(c) If the Hamiltonian is defined as:
H=a+ fo,

Calculate the expectation of H for the state described in b.

Long way:

a () 0 3 [ 3
m=(5 2) (5 0)=( )

(H) = 5.1 [Hly.1) + 5(v. L |Hly. )
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