Chapter 1 Exam Review: States and Operators

April 18th, 2022 Physics 852

Basics of States and Operators

- Finite (e.g two component) systems, have a discrete number states, while other systems may have an infinite number. An orthonormal basis can be formed, any physical state of the system can be expressed as a linear combination of its members:

$$
\begin{aligned}
& \langle\psi|=\sum_{i} a_{i}\langle i| \\
& |\psi\rangle=\sum_{i} a_{i}^{*}|i\rangle
\end{aligned}
$$

- The bra notation is shown first. Ket adjoint vectors are their complex transposes.
- States are normalized to have unit squares: $\quad\langle\psi \mid \psi\rangle=\sum_{i} a_{i}^{*} a_{i}=1$
- The squared overlap between two states gives the probability of observing a second state from an initial prepared state:

$$
P=|\langle\psi \mid \phi\rangle|^{2}
$$

- Operators act on functions/vectors to return transformed functions. We can express an operator in terms of its expectation for a pair of basis states:

$$
A=\sum_{i, j} a_{i, j}|i\rangle\langle j|
$$

Basics of Two Component Systems

- Consider the identity, and the Pauli matrices, $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$:

$$
\mathbb{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- Together, the set forms a complete, unitary basis for the space of 2×2 matrices. This basis in commonly used to describe spinhalf systems (a two-component system in three space). Note, $\sigma_{i} \sigma_{j}=\delta_{i j}+i \epsilon_{i j k} \sigma_{k}$. Spin-up and spin-down states are expressed as:

$$
|\uparrow\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right],|\downarrow\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Rotations of such states in the spin-half system are expressed out by a Taylor expansion:

$$
R(\vec{\theta})=e^{-i \vec{\theta} \cdot \vec{\sigma} / 2}=e^{-i \theta \hat{n} \cdot \vec{\sigma} / 2}=\cos (\theta / 2)-i \sin (\theta / 2) \vec{\sigma} \cdot \hat{n}
$$

- Alternately, rotations of two-component systems in two space can be expressed: $\quad R(\phi)=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]=\cos \phi-i \sigma_{y} \sin \phi$ about the direction of propagation (worth reviewing polarization naming conventions).

Example Problem 1: Two Component Neutrino Mixing

- A common application of two-state mixing is the atmospheric neutrino problem. Ground-based instruments have observed a deficit in the rate of muon neutrinos. As the rate of electron neutrinos was near expected, $\nu_{\mu} \rightarrow \nu_{\tau}$ must occur.
- We can introduce a Hamiltonian for these two observed states, and add in an additional mixing term:

$$
H=\left[\begin{array}{cc}
m_{\mu} & 0 \\
0 & m_{\tau}
\end{array}\right]+\alpha\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

- This gives new Hamiltonian with different neutrino eigen-energies and eigen-states than those observed. What are these new eigen-energies, and probabilities $P(n u m u \rightarrow$ nutau $), ~ P(n u m u \rightarrow n u m u)$, as a function of time?
- Begin by expressing \boldsymbol{H} in terms of Pauli matrices:

$$
\begin{aligned}
H & =\left[\begin{array}{cc}
m_{\mu} & \alpha \\
\alpha & m_{\tau}
\end{array}\right] \\
& =\alpha\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
m_{\mu}+m_{\tau} & 0 \\
0 & m_{\mu}+m_{\tau}
\end{array}\right]+\frac{1}{2}\left[\begin{array}{cc}
m_{\mu}-m_{\tau} & 0 \\
0 & m_{\tau}-m_{\mu}
\end{array}\right] \\
& =\alpha \sigma_{x}+\frac{1}{2}\left(m_{\mu}+m_{\tau}\right) \mathbb{1}+\frac{1}{2}\left(m_{\mu}-m_{\tau}\right) \sigma_{z} .
\end{aligned}
$$

- To diagonalize, $\alpha \sigma_{x}+\frac{1}{2}\left(m_{\mu}+m_{\tau}\right) \mathbb{1}+\frac{1}{2}\left(m_{\mu}-m_{\tau}\right) \sigma_{z}$, note the triplet of Pauli matrices rotates as (x, y, x).
- Form an analogue vector of magnitude and direction from projections along the Pauli matrices:

$$
\begin{aligned}
\beta & =\sqrt{\alpha^{2}+\left(m_{\mu}-m_{\tau}\right)^{2} / 4} \\
\hat{n} & =\left(\alpha, 0,\left(m_{\mu}-m_{\tau}\right) / 2\right) / \beta \\
H & =\frac{1}{2}\left(m_{\mu}+m_{\tau}\right) \mathbb{1}+\beta(\vec{\sigma} \cdot \hat{n})
\end{aligned}
$$

- Scalar eigen-energies are maintained under the transformation/rotation of Pauli matrices. Rotating along the (diagonalized) z direction,

$$
\begin{aligned}
H & =\frac{1}{2}\left(m_{\mu}+m_{\tau}\right) \mathbb{1}+\beta \sigma_{z} \\
& =\left[\begin{array}{cc}
\left(m_{\mu}+m_{\tau}\right) / 2+\beta & 0 \\
0 & \left(m_{\mu}+m_{\tau}\right) / 2-\beta
\end{array}\right] .
\end{aligned}
$$

- Can now read eigen-energies for the neutrino mass eigenstates from the diagonal.
- The evolution operator for time-independent Hamiltonians is, $U=e^{-i H t / \hbar}$:
- Unitary transformation, so basis is transformed but maintained as orthonormal.

$$
\begin{aligned}
U(t) & =\exp \left\{-i t\left(m_{\mu}+m_{\tau}\right) \mathbb{1} /(2 \hbar)-i t \beta(\vec{\sigma} \cdot \hat{n}) / \hbar\right\} \\
& =\exp \left\{-i t\left(m_{\mu}+m_{\tau}\right) /(2 \hbar)\right\}(\cos (\beta t / \hbar) \mathbb{1}-i \vec{\sigma} \cdot \hat{n} \sin (\beta t / \hbar)) \\
& =\exp \left\{-i t\left(m_{\mu}+m_{\tau}\right) /(2 \hbar)\right\}\left(\cos (\beta t / \hbar) \mathbb{1}-(i / \beta)\left(\alpha \sigma_{x}+\left(m_{\mu}-m_{\tau}\right) \sigma_{z} / 2\right) \sin (\beta t / \hbar)\right)
\end{aligned}
$$

- The probability of a specific oscillation is found by evolving the first state, and considering the squared projection onto the second:

$$
\begin{aligned}
\left\langle\nu_{\tau}\right| U(t)\left|\nu_{\mu}\right\rangle & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] U(t)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \exp \left\{-i t\left(m_{\mu}+m_{\tau}\right) /(2 \hbar)\right\}\left(-(i / \beta) \alpha \sigma_{x} \sin (\beta t / \hbar)\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\exp \left\{-i t\left(m_{\mu}+m_{\tau}\right) /(2 \hbar)\right\}(-(i / \beta) \alpha \sin (\beta t / \hbar))
\end{aligned}
$$

- The expectation of observing numu after time t is found similarly.

$$
\begin{aligned}
& P\left(\nu_{\mu} \rightarrow \nu_{\tau}\right)=\alpha^{2} \sin ^{2}(\beta t / \hbar) / \beta^{2} \\
& P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)=\left(m_{\mu}+m_{\tau}\right)^{2} \sin ^{2}(\beta t / \hbar) /\left(4 \beta^{2}\right)+\cos ^{2}(\beta t / \hbar)
\end{aligned}
$$

- Nice overview of two flavor neutrino oscillation formalism:

Basics of Density Matrices

- States can be described by a density matrix:

$$
\rho_{\psi}=|\psi\rangle\langle\psi|
$$

- Density matrices are sufficient to generate all observables using:

$$
\begin{aligned}
\langle\psi| \mathcal{A}|\psi\rangle & =\sum_{i, j} \psi_{i}^{*} A_{i j} \psi_{j} \\
& =\operatorname{Tr} \rho_{\psi} \mathcal{A}, \\
|\langle\phi| \mathcal{A}| \psi\rangle\left.\right|^{2} & \left.=<\psi\left|\mathcal{A}^{\dagger}\right| \phi\right\rangle\langle\phi| \mathcal{A}|\psi\rangle \\
& =\operatorname{Tr} \rho_{\psi} \mathcal{A}^{\dagger} \rho_{\phi} \mathcal{A} .
\end{aligned}
$$

- The trace of any product of matrices is invariant to unitary transformations, so the formulas above work regardless of basis (see example problem)

Example Problem 2: Density Matrices

Fall 1998 Final

1. (15 pt.s) Consider a spin $1 / 2$ system. The projection operat or P_{z} projects the component of the wave function that has positive spin along the z axis.

$$
\langle\eta| P_{z}|\eta\rangle=|\langle z, \uparrow \mid \eta\rangle|^{2}
$$

(a) Express P_{z} as a matrix in the basis where $\binom{1}{0}$ denotes a state with positive spin along the z axis.
(b) Write down the density matrix for a state that is an incoherent mixture of 50% positive spin along the y axis and 50% negative spin along the y axis.
(c) If the Hamiltonian is defined as:

$$
\mathcal{H}=\alpha+\beta \sigma_{x}
$$

Calculate the expectation of \mathcal{H} for the state described in b.
(a) Express P_{z} as a matrix in the basis where $\binom{1}{0}$ denotes a state with positive spin along the z axis.

$$
\begin{gathered}
|z, \uparrow\rangle=\binom{1}{0} \quad|z, \downarrow\rangle=\binom{0}{1} \\
P_{z}=|z, \uparrow\rangle\langle z, \uparrow|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
P_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
\text { Check: }\langle\eta| P_{z}|\eta\rangle=|\langle z, \uparrow \mid \eta\rangle|^{2} \\
|\eta\rangle=\binom{a}{b} \\
\langle\eta| P_{z}|\eta\rangle=\left(\begin{array}{ll}
a & b) \\
1 & 0 \\
0 & 0
\end{array}\right)\binom{a}{b}=a^{2} \\
\langle z, \uparrow \mid \eta\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{a}{b}=a \\
|\langle z, \uparrow \mid \eta\rangle|^{2}=a^{2}
\end{gathered}
$$

(b) Write down the density matrix for a state that is an incoherent mixture of 50% positive spin along the y axis and 50% negative spin along the y axis.

$$
\rho=\frac{1}{2}|y, \uparrow\rangle\langle y, \uparrow|+\frac{1}{2}|y, \downarrow\rangle\langle y, \downarrow|
$$

2 ways:

$$
\begin{gathered}
|y, \uparrow\rangle=\binom{1}{0} \quad|y, \downarrow\rangle=\binom{0}{1} \\
\rho=\frac{1}{2}\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\frac{1}{2}\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
\rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{gathered}
$$

$$
\begin{gathered}
|y, \uparrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{i} \quad|y, \downarrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i} \\
\rho=\frac{1}{2} \cdot \frac{1}{2}\binom{1}{i}\left(\begin{array}{ll}
1 & -i
\end{array}\right)+\frac{1}{2} \cdot \frac{1}{2}\binom{1}{-i}\left(\begin{array}{ll}
1 & i
\end{array}\right) \\
\rho=\frac{1}{4}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right) \\
\rho=\frac{1}{4}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

$$
\rho=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

(c) If the Hamiltonian is defined as:

$$
\mathcal{H}=\alpha+\beta \sigma_{x}
$$

Calculate the expectation of \mathcal{H} for the state described in b.

Short way: $\quad\langle H\rangle=\operatorname{Tr}(\rho H)$

$$
\begin{gathered}
\operatorname{Tr}(\rho H)=\alpha \operatorname{Tr}(\rho)+\beta \operatorname{Tr}\left(\rho \sigma_{x}\right) \\
\operatorname{Tr}(\rho H)=\alpha+\frac{\beta}{2} \operatorname{Tr}\left(\sigma_{x}\right) \\
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

$$
\langle H\rangle=\alpha
$$

(c) If the Hamiltonian is defined as:

$$
\mathcal{H}=\alpha+\beta \sigma_{x}
$$

Calculate the expectation of \mathcal{H} for the state described in b.

Long way:

$$
\begin{gathered}
H=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right)+\left(\begin{array}{ll}
0 & \beta \\
\beta & 0
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right) \\
\left.\langle H\rangle=\frac{1}{2}\langle y, \uparrow| H|y, \uparrow\rangle+\frac{1}{2}\langle y, \downarrow| H|y, \downarrow\rangle \right\rvert\, \\
\langle H\rangle=\frac{1}{4}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\binom{1}{i}+\frac{1}{4}\left(\begin{array}{ll}
1 & i
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\binom{1}{-i} \\
\langle H\rangle=\frac{1}{4}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\binom{\alpha+i \beta}{\beta+i \alpha}+\frac{1}{4}\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{\alpha-i \beta}{\beta-i \alpha} \\
\langle H\rangle=\frac{1}{2} \alpha+\frac{1}{2} \alpha
\end{gathered}
$$

$$
\langle H\rangle=\alpha
$$

