Chapter 7 Problem:

Differential Solid Angle, Structure Function, and Form

 FactorPatrick Cook

John Wieland
PHY 852 Spring 2022
Dr. Scott Pratt
April 22, 2022

Relevant Equations Present on Exam Equation Sheet

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =\left(\frac{d \sigma}{d \Omega}\right)_{\text {point }} \tilde{S}(\vec{q}), \tag{1}\\
\tilde{S}(\vec{q}) & =\frac{1}{N}\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2} \tag{2}
\end{align*}
$$

Relevant Equations NOT Present on Exam Equation Sheet

$$
\begin{align*}
q & \equiv \overrightarrow{k_{i}}-\overrightarrow{k_{f}} \tag{3}\\
& =k[(1-\cos \theta) \hat{z}-\sin \theta \cos \phi \hat{x}-\sin \theta \sin \phi \hat{y}] \\
\frac{d \sigma}{d \Omega} & =\left(\frac{d \sigma}{d \Omega}\right)_{\text {point }}|f(\vec{q})|^{2} \tag{4}\\
f(\vec{q}) & =\int d \vec{a} \rho(\vec{a}) e^{i \vec{q} \cdot \vec{a}} \tag{5}
\end{align*}
$$

Problem 1 The cross section for scattering a particle with momentum $\vec{k}=k \hat{z}$ off a single target is

$$
\left.\frac{d \sigma}{d \Omega}\right|_{\text {point }}=\alpha
$$

which is independent of the scattering angle. Here, we assume that the cross section is small. Now, two targets are placed a distance a apart, separated along the \hat{z} axis.
(a) At what scattering angles does the differential cross section, $\frac{d \sigma}{d \Omega}$, equal zero?
(b) At what scattering angles is the differential cross section, $\frac{d \sigma}{d \Omega}$, maximized? What is this maximum value?

Problem 1 Solution

We are free to choose the origin wherever it is most convenient. Here we choose the origin between the two targets, so $\vec{a}_{1}=-a \hat{z} / 2$ and $\vec{a}_{2}=a \hat{z} / 2$. Using Eqs. 1, 2, and 3,

$$
\begin{aligned}
\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}} & =e^{i q_{z} a / 2}+e^{-i q_{z} a / 2} \\
& =2 \cos \left(\frac{q_{z} a}{2}\right) \\
\longrightarrow \tilde{S}(\vec{q}) & =2 \cos ^{2}\left(\frac{q_{z} a}{2}\right) \\
\longrightarrow \frac{d \sigma}{d \Omega} & =2 \alpha \cos ^{2}\left(\frac{q_{z} a}{2}\right)
\end{aligned}
$$

Note that $N=2$, so $\tilde{S}(\vec{q})$ is half of the sum squared.
(a)
$\cos x=0$ when $x=\frac{(2 n+1) \pi}{2}, n \in \mathbb{Z}$, so the differential cross section is zero at

$$
\begin{aligned}
\frac{q_{z} a}{2} & =\frac{(2 n+1) \pi}{2} \\
\longrightarrow k a(1-\cos \theta) & =(2 n+1) \pi \\
\longrightarrow \cos \theta & =1-\frac{(2 n+1) \pi}{k a} .
\end{aligned}
$$

So,

$$
\cos \theta_{\min }=1-\frac{(2 n+1) \pi}{k a}
$$

(b)
$\cos ^{2} x=1$ when $x=n \pi, n \in \mathbb{Z}$, so the differential cross section is maximum at

$$
\begin{aligned}
\frac{q_{z} a}{2} & =n \pi \\
\longrightarrow k a(1-\cos \theta) & =2 n \pi \\
\longrightarrow \cos \theta & =1-\frac{2 n \pi}{k a} .
\end{aligned}
$$

So,

$$
\cos \theta_{\max }=1-\frac{2 n \pi}{k a}
$$

with maximum value $d \sigma / d \Omega=2 \alpha$.

Problem 2 The cross section for scattering a particle with momentum $\vec{k}=k \hat{z}$ off a single target is

$$
\left.\frac{d \sigma}{d \Omega}\right|_{\text {point }}=\alpha
$$

which is independent of the scattering angle. Here, we assume that the cross section is small. Now, two targets are placed a distance a apart, separated along the \hat{x} axis.
(a) Find the condition for the scattering angles such that the differential cross section, $\frac{d \sigma}{d \Omega}$, equals zero.
(b) At what scattering angles is the differential cross section, $\frac{d \sigma}{d \Omega}$, maximized? What is this maximum value?

Problem 2 Solution

We are free to choose the origin wherever it is most convenient. Here we choose the origin between the two targets, so $\vec{a}_{1}=-a \hat{x} / 2$ and $\vec{a}_{2}=a \hat{x} / 2$. Using Eqs. 1, 2, and 3,

$$
\begin{aligned}
\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}} & =e^{i q_{x} a / 2}+e^{-i q_{x} a / 2} \\
& =2 \cos \left(\frac{q_{x} a}{2}\right) \\
\longrightarrow \tilde{S}(\vec{q}) & =2 \cos ^{2}\left(\frac{q_{x} a}{2}\right) \\
\longrightarrow \frac{d \sigma}{d \Omega} & =2 \alpha \cos ^{2}\left(\frac{q_{x} a}{2}\right)
\end{aligned}
$$

Note that $N=2$, so $\tilde{S}(\vec{q})$ is half of the sum squared.

(a)

$\cos x=0$ when $x=\frac{(2 n+1) \pi}{2}, n \in \mathbb{Z}$, so the differential cross section is zero at

$$
\begin{aligned}
\frac{q_{x} a}{2} & =\frac{(2 n+1) \pi}{2} \\
\longrightarrow-k a \sin \theta \cos \phi & =(2 n+1) \pi \\
\longrightarrow \sin \theta \cos \phi & =\frac{(2 n+1) \pi}{k a}
\end{aligned}
$$

So,

$$
\sin \theta_{\min } \cos \phi_{\min }=\frac{(2 n+1) \pi}{k a}
$$

Note that the minus sign in q_{x} was dropped since $n \in \mathbb{Z}$ includes positive and negative integers.
(b)
$\cos ^{2} x=1$ when $x=n \pi, n \in \mathbb{Z}$, so the differential cross section is zero at

$$
\begin{aligned}
\frac{q_{x} a}{2} & =n \pi \\
\longrightarrow-k a \sin \theta \cos \phi & =2 n \pi \\
\longrightarrow \sin \theta \cos \phi & =\frac{2 n \pi}{k a} .
\end{aligned}
$$

So,

$$
\sin \theta_{\max } \cos \phi_{\max }=\frac{2 n \pi}{k a}
$$

with maximum value $d \sigma / d \Omega=2 \alpha$. Note that the minus sign in q_{x} was dropped since $n \in \mathbb{Z}$ includes positive and negative integers.

Problem 3 The cross section for scattering a particle with momentum $\vec{k}=k \hat{z}$ off a single point-like target is

$$
\left.\frac{d \sigma}{d \Omega}\right|_{\text {point }}=\alpha
$$

which is independent of the scattering angle. Here, we assume that the cross section is small. Now, suppose the target is distributed uniformly along a line of length a on the \hat{z} axis.

At what scattering angles does the differential cross section, $\frac{d \sigma}{d \Omega}$, equal zero?

Problem 3 Solution

We are free to choose the origin wherever it is most convenient. Here we choose the origin at the midpoint of the distribution. Using Eqs. 3, 4, and 5,

$$
\begin{aligned}
f(\vec{q}) & =\int d \vec{r} \frac{1}{a} e^{i \vec{q} \cdot \vec{r}} \\
& =\int_{-a / 2}^{a / 2} d r \frac{1}{a} e^{i q_{z} r} \\
& =\frac{1}{i q_{z}}\left[e^{i q_{z} a / 2}-e^{-i q_{z} a / 2}\right] \\
& =\frac{2}{q_{z}} \sin \left(\frac{q_{z} a}{2}\right)
\end{aligned}
$$

So, the differential cross section is zero when $q_{z} a=2 n \pi, n \in \mathbb{Z}$. Or,

$$
\cos \theta_{\min }=1-\frac{2 n \pi}{k a} .
$$

