QM Subject Exam Preparation (Chapter 3)

Scott Campbell, Nico Mendez, Nick Juliano

April 18, 2022

Background

Scalar and Vector Potentials

$$
\vec{E}=-\nabla \Phi-\frac{1}{c} \frac{\partial}{\partial t} \vec{A}, \quad \vec{B}=\vec{\nabla} \times \vec{A}
$$

Schrödinger's Equation

$$
i \hbar \partial_{t} \psi=\left[\frac{1}{2 m}(-i \hbar \nabla)^{2}+V(r)\right] \psi
$$

Making a minimal substitution of $-i \hbar \nabla \rightarrow-i \hbar \nabla-e \vec{A} / c$ and $-i \hbar \partial_{t} \rightarrow-i \hbar \partial_{t}-e \Phi$, the Schrödinger equation becomes:

$$
\frac{(-i \hbar \nabla-e \vec{A} / c)^{2}}{2 m} \psi+V \psi=\left(i \hbar \partial_{t}-e \Phi\right) \psi
$$

The Hamiltonian is then given by

$$
H=\frac{1}{2 m}(\vec{P}-e \vec{A} / c)^{2}+e \Phi
$$

Gauge Invariance

Recall that the Gauge transformation is $\vec{A} \rightarrow \vec{A}+\nabla \Lambda(\vec{r}, t)$ and $\Phi \rightarrow \Phi-\frac{1}{c} \frac{\partial}{\partial t} \Lambda$ for any function Λ. In Quantum, we add that $\psi \rightarrow \exp \left\{\frac{1}{\hbar c} i e \Lambda\right\} \psi$, which is simply adding a phase to the wavefunction. When you combine the changes for $\vec{A}, \vec{\Phi}$, and $\vec{\psi}$ you get invariance.

Particles in Constant Magnetic Field (Landau Levels)

Consider a particle mass m charge q with $B=B \hat{z}$. Classically, we expect to move following the cyclotron frequency $w_{c}=\frac{q B}{m}$. Choose $\vec{A}=-B y \hat{x}$ for simplicity. The Hamiltonian is then

$$
H=\frac{1}{2 m}\left(P_{x}+\frac{q}{c} B y\right)^{2}+\frac{1}{2 m} P_{y}^{2}
$$

ignoring the motion in the z-direction. Note that p_{x} is a conserved quantity since H has no explicit x dependence. So we are looking for eigenstates of P_{x}, and we choose

$$
\psi(x, y)=\psi(y) e^{i k_{x} x}
$$

where $p_{x}=\hbar k_{x}$. Then the Hamiltonian can be rearranged to be in the form of a simple harmonic oscillator:

$$
\begin{aligned}
H_{k_{x}} & =\frac{1}{2 m} P_{y}^{2}+\frac{1}{2 m}\left(\frac{q B}{c} y+\hbar k_{x}\right)^{2} \\
& =\frac{1}{2 m} P_{y}^{2}+\frac{m \omega_{c}^{2}}{2}\left(y-\left(-\frac{\hbar c k_{x}}{q B}\right)\right)^{2}
\end{aligned}
$$

Now consider adding a uniform electric field in the \hat{x} direction (assume no initial velocity in the \hat{z}-direction). The Hamiltonian looks like:

$$
\begin{gathered}
H=\frac{P_{x}^{2}}{2 m}+\frac{1}{2 m}\left(P_{y}-e A_{y} / c\right)^{2}-e E x \\
=\frac{P_{x}^{2}}{2 m}+\frac{e^{2} B^{2}}{2 m c^{2}}\left[x-\left(\frac{\hbar c k_{y}}{e B}+\frac{m c^{2} E}{e B^{2}}\right)\right]^{2}-\frac{m c^{2}}{2}\left(\frac{E}{B}\right)^{2}-\frac{P_{y} E}{B} \\
=\frac{P_{x}^{2}}{2 m}+\frac{e^{2} B^{2}}{2 m c^{2}}\left(x-x_{0}\right)^{2}-\frac{m c^{2}}{2}\left(\frac{E}{B}\right)^{2}-\frac{P_{y} E}{B}
\end{gathered}
$$

where

$$
x_{0}=\frac{\hbar c k_{y}}{e B}+\frac{m c^{2} E}{e B^{2}}
$$

the center of the harmonic oscillator.
Now suppose we wanted to calculate the average (drift) velocity of the particle in the \hat{y} direction. We can exploit the fact that

$$
m v_{y}=\Pi_{y}
$$

so

$$
v_{y}=\frac{\Pi_{y}}{m}=\frac{h k_{y}}{m}-\frac{e B x}{m c}
$$

Averaging v_{y}, we substitute in x_{0} for x :

$$
\begin{gathered}
\overline{v_{y}}=\frac{h k_{y}}{m}-\frac{e B x_{0}}{m c} \\
=\frac{h k_{y}}{m}-\frac{e B}{m c}\left(\frac{\hbar c k_{y}}{e B}+\frac{m c^{2} E}{e B^{2}}\right) \\
=-\frac{E c}{B}
\end{gathered}
$$

Useful Commutation Relations:

$\left[r_{i}, P_{j}\right]=0$ if $i \neq j$

Practice Final Fall 2019 Question 7

A particle of mass m and charge e is placed in a region with uniform magnetic field \vec{B} along the \hat{z} axis.
a) Write the vector potential that describes the magnetic field such that \vec{A} is in the \hat{y} direction.
b) Write the Hamiltonian with this vector potential.
c) Which quantities commute with the Hamiltonian?
(i) P_{x}
(ii) P_{y}
(iii) P_{z}
(iv) $P_{x}-e A_{x} / c$
(v) $P_{y}-e A_{y} / c$
(vi) $P_{z}-e A_{z} / c$

Solutions

Part a

We know that we want A_{μ} to only have a term in the A_{y} term and produce only a magnetic field. In this case, we need to satisfy the following condition (reducing the vector potential to the 3 -components as $A_{o}=0$):

$$
\begin{aligned}
\vec{B} & =\vec{\nabla} \times \vec{A} \\
& =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(A_{x}, A_{y}, A_{z}\right) \\
(0,0, B) & =\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}, \frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}, \frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \\
& =\left(0,0, \frac{\partial A_{y}}{\partial x}\right) \\
& =(0,0, B x)
\end{aligned}
$$

Meaning that $A_{y}=B x \hat{y}$.

Part b

We know that the Hamiltonian has the form of

$$
H=\frac{1}{2 m}(\vec{P}-e \vec{A} / c)^{2}+e \Phi
$$

By plugging in the components of \vec{P} and \vec{A} and knowing that $A_{o}=\Phi=0$ we get the Hamiltonian to be

$$
H=\frac{P_{x}^{2}}{2 m}+\frac{\left(P_{y}-e B x / c\right)^{2}}{2 m}+\frac{P_{z}^{2}}{2 m}
$$

Part c

By looking at the Hamiltonian we see that there is an explicit dependence on x which rules out P_{x}. Because P_{x} is rules out, so is $P_{x}-e A_{x} / c$. Recall that A_{y} has x dependence which we have already ruled out ruling out $P_{y}-e A_{y} / c$. Therefore, the only quantities that commute are P_{y}, P_{z}, and $P_{z}-e A_{z} / c$ (because $A_{z}=0$ so $\left.P_{z}-e A_{z} / c=P_{z}\right)$.

