Chapter 2 Review

Adams and Yeung

Topics Covered in Chapter

Wave Equation

Momentum Space

Charge conservation and Continuity

Potential Problems in 1D

Harmonic Oscillator

Past Problems

Not exactly (it's too easy!), but content shows up mostly in:

- Spherically symmetric bound state problems (in combination with chapter 4)
 - August 2021 problem 4, August 2020 problem 1, Spring 2020 problem 4 part d
- Harmonic oscillators frequently show up in Fermi's golden rule problems
- invart

4. Consider a particle of mass \boldsymbol{m} in a three-dimensional potential

$$V(r)=-eta\delta(r-a),~~eta>0.$$

(a) (10 pts) In terms of β and m, what is the minimum value of a for which one has a bound state?

This gives a Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}\psi(r) + V(r)\psi(r) = E\psi(r)$$
$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}\psi(r) - \beta\delta(r-a)\psi(r) = E\psi(r)$$

$$\frac{\partial^2}{\partial r^2} u(r \neq a) = -\frac{2mE}{\hbar^2} u(r \neq a)$$
$$= \frac{2m|E|}{\hbar^2} u(r \neq a)$$

This is positive because, for a bound state, the energy is negative. This implies the wavefunctions are exponentials. We can also tell that k is the same on both sides.

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial r^2}\psi(r) - \beta\delta(r-a)\psi(r) = E\psi(r)$$
$$\frac{\partial^2}{\partial r^2}\psi(r) = -\frac{2m}{\hbar^2}\left(E + \beta\delta(r-a)\right)\psi(r)$$

Integrating this over the interval $[a - \varepsilon, a + \varepsilon]$ $(\varepsilon \to 0)$, we get the boundary condition

$$\left. \frac{\partial \psi}{\partial r} \right|_{r=a^+} - \left. \frac{\partial \psi}{\partial r} \right|_{r=a^-} = -\frac{2m\beta}{\hbar^2} u(a)$$

We also know that the wavefunction must be continuous across the boundary. Furthermore,

 $\psi(0) = 0$ $\psi(r \to \infty) = 0$

From these boundary conditions, we can derive

$$\psi(r < a) = A \sinh kr$$

 $\psi(r > a) = Be^{-kr}$

At r = a, the wavefunction and its slope give, respectively,

$$A \sinh ka = Be^{-ka}$$
$$-kBe^{-ka} - kA \cosh ka = -\frac{2m\beta}{\hbar^2} A \sinh ka$$
$$-kA \sinh ka - kA \cosh ka = -\frac{2m\beta}{\hbar^2} A \sinh ka$$
$$\sinh ka + \cosh ka = \frac{2m\beta}{\hbar^2} \frac{\sinh ka}{k}$$

For the minimum number of states, $k \to 0$ as we want the wavefunction to be as evenly spread throughout the space as possible.

$$\lim_{k \to 0} (\sinh ka + \cosh ka) = \lim_{k \to 0} \frac{2m\beta a}{\hbar^2} \frac{\sinh ka}{ka}$$
$$1 = \frac{2m\beta a}{\hbar^2}$$
$$a = \frac{\hbar^2}{2m\beta}$$

Aug 2020 Problem 1

1. (10 pts) A particle of mass m interacts with a spherically symmetric attractive potential,

$$V(r) = \left\{egin{array}{cc} -V_0 + rac{V_0 r}{a}, & r < a \ 0, & r > a \end{array}
ight.$$

Circle the true statements below:

- Fixing a, and making V_0 very small, but non-zero, there will always be at least one bound state.
- Fixing V_0 , and making a very small, but non-zero, there will always be at least one bound state.
- Fixing a, as the magnitude of V_0 increases, the number of bound states will increase.
- Fixing V_0 , as the magnitude of a increases, the number of bound states will increase.

August 2020 Problem 1: Solution

 $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist. $V(r) \int Sketch of u(r), needs to turn over$ before r=a for a bound state to exist.

Harmonic Oscillator Overlap

Fermi's golden rule problems sometimes require calculating matrix elements such as <1|x|0> where these are the ground and first excited states of the harmonic oscillator. In these cases, you can avoid integrating by using $x = \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger})$ Then:

$$<1|x|0> = <1|\sqrt{\frac{\hbar}{2m\omega}} (a+a^{\dagger})|0>$$
$$=\sqrt{\frac{\hbar}{2m\omega}} <1|a^{\dagger}|0> =\sqrt{\frac{\hbar}{2m\omega}}$$