
Problem 13.4. Consider the Dirac representation,

β =

(
I 0
0 −I

)
~α =

(
0 ~σ
~σ 0

)
and the chiral representation,

β =

(
0 −I
−I 0

)
~α =

(
~σ 0
0 −~σ

)
The spinors, u↑ and u↓, represent positve-energy eigenvalues of the Dirac

equation assuming the momentum is along the z axis.

(mβ + pzαz)u(pz) = Eu(pz)

The spin labels, ↑ and ↓ refer to the positive and negative values of the
spin operator,

Σz =

(
σz 0
0 σz

)
Write the four-component spinors u↑ and u↓ in terms of p, E and m:

(a) in the Dirac representation.

(b) in the chiral representation.

(c) in the limit pz → 0 for both representations.

(d) in the limit pz →∞ for both representations.

(a) The generalized, unnormalized spin up and spin down eigenvectors of
the spin operator will be,

u↑ =


a
0
b
0

 u↓ =


0
a
0
b
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where a and b are complex, and can include phase factors.
Every solution of the Dirac equation has the condition that

E2 = p2 +m2 (1)

In the Dirac representation, the eigenvalue problem for u↑ becomes
m 0 p 0
0 m 0 −p
p 0 −m 0
0 −p 0 −m



a
0
b
0

 = E


a
0
b
0


This leads to the system of equations

ma+ pb = Ea

pa−mb = Eb

a = (pb)/(E −m) , which means

u↑ ∝


(pb)/(E −m)

0
b
0

 ∝


p
0

E −m
0


Normalizing this such that u∗↑u↑ = 1...

p2 + (E −m)2 = C2

p2 + E2 − 2mE +m2 = C2

E2 −m2 + E2 − 2mE +m2 = C2

2E2 − 2mE = C2

leads to the solution

u↑ =
1√

2E(E −m)


p
0

E −m
0


Following the same steps for u↓ leads to the following system of equations...
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ma− pb = Ea

−pa−mb = Eb

which will lead to an unnormalized solution of

u↓ ∝


0

−pb/(E −m)
0
b

 ∝


0
−p
0

E −m


which will lead to the normalized solution of

u↓ =
1√

2E(E −m)


0
−p
0

E −m



(b) In the chiral representation, the eigenvalue problem for u↑ becomes
p 0 −m 0
0 −p 0 −m
−m 0 −p 0

0 −m 0 p



a
0
b
0

 = E


a
0
b
0


This leads to the system of equations

pa−mb = Ea

−ma− pb = Eb

a = (−mb)/(E − p) , which means

u↑ ∝


(−mb)/(E − p)

0
b
0

 ∝

−m

0
E − p

0


Normalizing this such that u∗↑u↑ = 1...
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m2 + (E − p)2 = C2

m2 + E2 − 2Ep+ p2 = C2

E2 − p2 + E2 − 2Ep+ p2 = C2

2E2 − 2Ep = C2

leads to the solution

u↑ =
1√

2E(E − p)


−m

0
E − p

0


Following the same steps for u↓ leads to the following system of equations...

−pa−mb = Ea

−ma+ pb = Eb

which will lead to an unnormalized solution of

u↓ ∝


0

(−mb)/(E + p)
0
b

 ∝


0
−m

0
E + p


which will lead to the normalized solution of

u↓ =
1√

2E(E + p)


0
−m

0
E + p



(c) In the low momentum limit, the Dirac representation for u↑ has the
following system of equations...

ma = Ea

−mb = Eb
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and u↓ has the following system of equations...

ma = Ea

−mb = Eb

which have the solutions

u↑ =


1
0
0
0

 u↓ =


0
1
0
0


In the chiral representation, u↑ has the following system of equations...

−mb = Ea

−ma = Eb

and u↓ has the following system of equations...

−mb = Ea

−ma = Eb

which have the solutions

u↑ =
1√
2


1
0
−1
0

 u↓ =
1√
2


0
1
0
−1


(d) In the high momentum limit, the Dirac representation for u↑ has the

following system of equations...

pb = Ea

pa = Eb

and u↓ has the following system of equations...

−pb = Ea

−pa = Eb
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which have the solutions

u↑ =
1√
2


1
0
1
0

 u↓ =
1√
2


0
1
0
−1


In the chiral representation, u↑ has the following system of equations...

pa = Ea

−pb = Eb

and u↓ has the following system of equations...

−pa = Ea

pb = Eb

which have the solutions

u↑ =


1
0
0
0

 u↓ =


0
0
0
1



Problem 14.2. Consider the coherent state defined by

|η〉 = e−η
∗η/2eηa

† |0〉 .

(a) Show that η can also be written as

|η〉 = e−η
∗a+ηa† |0〉

(b) Show that the overlap of two states is given by

〈η′|η〉 = e−|η
′|2/2−|η|2/2+η′∗η.
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Solution: (a) Let

|χ〉 = e−η
∗a+ηa† |0〉 .

Use the Baker-Campbell-Hausdorff lemma,

eA+B = eAeBe−C/2, C = [A,B],

and the commutation relation

[−η∗a, ηa†] = −η∗η[a, a†] = −η∗η
to show that

|χ〉 = e−η
∗aeηa

†
eη
∗η/2 |0〉

= eη
∗ηe−η

∗a |η〉

= eη
∗η
∑
n

(−η∗a)n

n!
|η〉 .

Then use that the coherent state |η〉 is an eigenstate of the destruction op-
erator with eigenvalue η,

|χ〉 = eη
∗η
∑
n

(−η∗η)n

n!
|η〉

= eη
∗ηe−η

∗η |η〉
= |η〉 .

(b) Using the definition of |η′〉,

〈η′|η〉 = 〈0| e−|η′|2/2eη′∗a |η〉

= e−|η
′|2/2 〈0|

∑
n

(η′∗a)n

n!
|η〉 .

As in part (a), use a |η〉 = η |η〉 to show

〈η′|η〉 = e−|η
′|2/2eη

′∗η 〈0|η〉 .
Now do the same using the definition of |η〉,

〈η′|η〉 = e−|η
′|2/2eη

′∗η 〈0| e−|η|2/2eηa† |0〉

= exp

(
−|η′|2

2
+ η′∗η − |η|

2

2

)
〈0|
∑
n

(ηa†)n

n!
|0〉

= exp

(
−|η′|2

2
+ η′∗η − |η|

2

2

)
,
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noting that only the n = 0 term in the sum survives.
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