Problem 13.4. Consider the Dirac representation,

$$
\beta=\left(\begin{array}{cc}
\mathbb{I} & 0 \\
0 & -\mathbb{I}
\end{array}\right) \quad \vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right)
$$

and the chiral representation,

$$
\beta=\left(\begin{array}{cc}
0 & -\mathbb{I} \\
-\mathbb{I} & 0
\end{array}\right) \quad \vec{\alpha}=\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & -\vec{\sigma}
\end{array}\right)
$$

The spinors, u_{\uparrow} and u_{\downarrow}, represent positve-energy eigenvalues of the Dirac equation assuming the momentum is along the z axis.

$$
\left(m \beta+p_{z} \alpha_{z}\right) u\left(p_{z}\right)=E u\left(p_{z}\right)
$$

The spin labels, \uparrow and \downarrow refer to the positive and negative values of the spin operator,

$$
\Sigma_{z}=\left(\begin{array}{cc}
\sigma_{z} & 0 \\
0 & \sigma_{z}
\end{array}\right)
$$

Write the four-component spinors u_{\uparrow} and u_{\downarrow} in terms of p, E and m :
(a) in the Dirac representation.
(b) in the chiral representation.
(c) in the limit $p_{z} \rightarrow 0$ for both representations.
(d) in the limit $p_{z} \rightarrow \infty$ for both representations.
(a) The generalized, unnormalized spin up and spin down eigenvectors of the spin operator will be,

$$
u_{\uparrow}=\left(\begin{array}{c}
a \\
0 \\
b \\
0
\end{array}\right) \quad u_{\downarrow}=\left(\begin{array}{c}
0 \\
a \\
0 \\
b
\end{array}\right)
$$

where a and b are complex, and can include phase factors.
Every solution of the Dirac equation has the condition that

$$
\begin{equation*}
E^{2}=p^{2}+m^{2} \tag{1}
\end{equation*}
$$

In the Dirac representation, the eigenvalue problem for u_{\uparrow} becomes

$$
\left(\begin{array}{cccc}
m & 0 & p & 0 \\
0 & m & 0 & -p \\
p & 0 & -m & 0 \\
0 & -p & 0 & -m
\end{array}\right)\left(\begin{array}{l}
a \\
0 \\
b \\
0
\end{array}\right)=E\left(\begin{array}{l}
a \\
0 \\
b \\
0
\end{array}\right)
$$

This leads to the system of equations

$$
\begin{aligned}
& m a+p b=E a \\
& p a-m b=E b
\end{aligned}
$$

$a=(p b) /(E-m)$, which means

$$
u_{\uparrow} \propto\left(\begin{array}{c}
(p b) /(E-m) \\
0 \\
b \\
0
\end{array}\right) \propto\left(\begin{array}{c}
p \\
0 \\
E-m \\
0
\end{array}\right)
$$

Normalizing this such that $u_{\uparrow}^{*} u_{\uparrow}=1 \ldots$

$$
\begin{aligned}
p^{2}+(E-m)^{2} & =C^{2} \\
p^{2}+E^{2}-2 m E+m^{2} & =C^{2} \\
E^{2}-m^{2}+E^{2}-2 m E+m^{2} & =C^{2} \\
2 E^{2}-2 m E & =C^{2}
\end{aligned}
$$

leads to the solution

$$
u_{\uparrow}=\frac{1}{\sqrt{2 E(E-m)}}\left(\begin{array}{c}
p \\
0 \\
E-m \\
0
\end{array}\right)
$$

Following the same steps for u_{\downarrow} leads to the following system of equations...

$$
\begin{aligned}
m a-p b & =E a \\
-p a-m b & =E b
\end{aligned}
$$

which will lead to an unnormalized solution of

$$
u_{\downarrow} \propto\left(\begin{array}{c}
0 \\
-p b /(E-m) \\
0 \\
b
\end{array}\right) \propto\left(\begin{array}{c}
0 \\
-p \\
0 \\
E-m
\end{array}\right)
$$

which will lead to the normalized solution of

$$
u_{\downarrow}=\frac{1}{\sqrt{2 E(E-m)}}\left(\begin{array}{c}
0 \\
-p \\
0 \\
E-m
\end{array}\right)
$$

(b) In the chiral representation, the eigenvalue problem for u_{\uparrow} becomes

$$
\left(\begin{array}{cccc}
p & 0 & -m & 0 \\
0 & -p & 0 & -m \\
-m & 0 & -p & 0 \\
0 & -m & 0 & p
\end{array}\right)\left(\begin{array}{l}
a \\
0 \\
b \\
0
\end{array}\right)=E\left(\begin{array}{l}
a \\
0 \\
b \\
0
\end{array}\right)
$$

This leads to the system of equations

$$
\begin{aligned}
p a-m b & =E a \\
-m a-p b & =E b
\end{aligned}
$$

$a=(-m b) /(E-p)$, which means

$$
u_{\uparrow} \propto\left(\begin{array}{c}
(-m b) /(E-p) \\
0 \\
b \\
0
\end{array}\right) \propto\left(\begin{array}{c}
-m \\
0 \\
E-p \\
0
\end{array}\right)
$$

Normalizing this such that $u_{\uparrow}^{*} u_{\uparrow}=1 \ldots$

$$
\begin{aligned}
m^{2}+(E-p)^{2} & =C^{2} \\
m^{2}+E^{2}-2 E p+p^{2} & =C^{2} \\
E^{2}-p^{2}+E^{2}-2 E p+p^{2} & =C^{2} \\
2 E^{2}-2 E p & =C^{2}
\end{aligned}
$$

leads to the solution

$$
u_{\uparrow}=\frac{1}{\sqrt{2 E(E-p)}}\left(\begin{array}{c}
-m \\
0 \\
E-p \\
0
\end{array}\right)
$$

Following the same steps for u_{\downarrow} leads to the following system of equations...

$$
\begin{aligned}
& -p a-m b=E a \\
& -m a+p b=E b
\end{aligned}
$$

which will lead to an unnormalized solution of

$$
u_{\downarrow} \propto\left(\begin{array}{c}
0 \\
(-m b) /(E+p) \\
0 \\
b
\end{array}\right) \propto\left(\begin{array}{c}
0 \\
-m \\
0 \\
E+p
\end{array}\right)
$$

which will lead to the normalized solution of

$$
u_{\downarrow}=\frac{1}{\sqrt{2 E(E+p)}}\left(\begin{array}{c}
0 \\
-m \\
0 \\
E+p
\end{array}\right)
$$

(c) In the low momentum limit, the Dirac representation for u_{\uparrow} has the following system of equations...

$$
\begin{aligned}
m a & =E a \\
-m b & =E b
\end{aligned}
$$

and u_{\downarrow} has the following system of equations...

$$
\begin{aligned}
m a & =E a \\
-m b & =E b
\end{aligned}
$$

which have the solutions

$$
u_{\uparrow}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad u_{\downarrow}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

In the chiral representation, u_{\uparrow} has the following system of equations...

$$
\begin{aligned}
& -m b=E a \\
& -m a=E b
\end{aligned}
$$

and u_{\downarrow} has the following system of equations...

$$
\begin{aligned}
& -m b=E a \\
& -m a=E b
\end{aligned}
$$

which have the solutions

$$
u_{\uparrow}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \quad u_{\downarrow}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

(d) In the high momentum limit, the Dirac representation for u_{\uparrow} has the following system of equations...

$$
\begin{aligned}
p b & =E a \\
p a & =E b
\end{aligned}
$$

and u_{\downarrow} has the following system of equations...

$$
\begin{aligned}
& -p b=E a \\
& -p a=E b
\end{aligned}
$$

which have the solutions

$$
u_{\uparrow}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) \quad u_{\downarrow}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

In the chiral representation, u_{\uparrow} has the following system of equations...

$$
\begin{aligned}
p a & =E a \\
-p b & =E b
\end{aligned}
$$

and u_{\downarrow} has the following system of equations...

$$
\begin{aligned}
-p a & =E a \\
p b & =E b
\end{aligned}
$$

which have the solutions

$$
u_{\uparrow}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad u_{\downarrow}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Problem 14.2. Consider the coherent state defined by

$$
|\eta\rangle=e^{-\eta^{*} \eta / 2} e^{\eta a^{\dagger}}|0\rangle .
$$

(a) Show that η can also be written as

$$
|\eta\rangle=e^{-\eta^{*} a+\eta a^{\dagger}}|0\rangle
$$

(b) Show that the overlap of two states is given by

$$
\left\langle\eta^{\prime} \mid \eta\right\rangle=e^{-\left|\eta^{\prime}\right|^{2} / 2-|\eta|^{2} / 2+\eta^{\prime *} \eta} .
$$

Solution: (a) Let

$$
|\chi\rangle=e^{-\eta^{*} a+\eta a^{\dagger}}|0\rangle
$$

Use the Baker-Campbell-Hausdorff lemma,

$$
e^{A+B}=e^{A} e^{B} e^{-C / 2}, \quad C=[A, B]
$$

and the commutation relation

$$
\left[-\eta^{*} a, \eta a^{\dagger}\right]=-\eta^{*} \eta\left[a, a^{\dagger}\right]=-\eta^{*} \eta
$$

to show that

$$
\begin{aligned}
|\chi\rangle & =e^{-\eta^{*} a} e^{\eta a^{\dagger}} e^{\eta^{*} \eta / 2}|0\rangle \\
& =e^{\eta^{*} \eta} e^{-\eta^{*} a}|\eta\rangle \\
& =e^{\eta^{*} \eta} \sum_{n} \frac{\left(-\eta^{*} a\right)^{n}}{n!}|\eta\rangle .
\end{aligned}
$$

Then use that the coherent state $|\eta\rangle$ is an eigenstate of the destruction operator with eigenvalue η,

$$
\begin{aligned}
|\chi\rangle & =e^{\eta^{*} \eta} \sum_{n} \frac{\left(-\eta^{*} \eta\right)^{n}}{n!}|\eta\rangle \\
& =e^{\eta^{*} \eta} e^{-\eta^{*} \eta}|\eta\rangle \\
& =|\eta\rangle .
\end{aligned}
$$

(b) Using the definition of $\left|\eta^{\prime}\right\rangle$,

$$
\begin{aligned}
\left\langle\eta^{\prime} \mid \eta\right\rangle & =\langle 0| e^{-\left|\eta^{\prime}\right|^{2} / 2} e^{\eta^{\prime *} a}|\eta\rangle \\
& =e^{-\left|\eta^{\prime}\right|^{2} / 2}\langle 0| \sum_{n} \frac{\left(\eta^{\prime *} a\right)^{n}}{n!}|\eta\rangle .
\end{aligned}
$$

As in part (a), use $a|\eta\rangle=\eta|\eta\rangle$ to show

$$
\left\langle\eta^{\prime} \mid \eta\right\rangle=e^{-\left|\eta^{\prime}\right|^{2} / 2} e^{\eta^{\prime *} \eta}\langle 0 \mid \eta\rangle .
$$

Now do the same using the definition of $|\eta\rangle$,

$$
\begin{aligned}
\left\langle\eta^{\prime} \mid \eta\right\rangle & =e^{-\left|\eta^{\prime}\right|^{2} / 2} e^{\eta^{\prime *} \eta}\langle 0| e^{-|\eta|^{2} / 2} e^{\eta a^{\dagger}}|0\rangle \\
& =\exp \left(\frac{-\left|\eta^{\prime}\right|^{2}}{2}+\eta^{\prime *} \eta-\frac{|\eta|^{2}}{2}\right)\langle 0| \sum_{n} \frac{\left(\eta a^{\dagger}\right)^{n}}{n!}|0\rangle \\
& =\exp \left(\frac{-\left|\eta^{\prime}\right|^{2}}{2}+\eta^{\prime *} \eta-\frac{|\eta|^{2}}{2}\right),
\end{aligned}
$$

noting that only the $n=0$ term in the sum survives.

