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1 Introduction

Chapters 3 and 12 deal with adjusting quantum mechanics to accommodate
classical electromagnetism and methods for studying many electron systems.

Relevant equations: The magnetic vector potential satisfies the following
relations

~B = ∇× ~A

~E = −∇φ− 1

c

∂ ~A

∂t

In 4-Vector form, it is given as:

Aα =

(
φ

c
, ~A

)
In a convenient form, the fields satisfy the following Lorentz Transformation:

~E‖
′

= ~E‖

~B‖
′

= ~B‖

~E⊥
′

= γ
(
~E⊥ + ~v × ~B

)
~B⊥
′

= γ

(
~B⊥ −

1

c2
~v × ~E

)

2 Subject Exam Spring 2000, Problem 4

An electron is placed in a constant magnetic field of strength B which lies along
the z axis. The electron also experiences an electric field E which lies along the
y axis. Neglect the coupling of the spin to the magnetic field.

1. (5 pts) Write down a vector potential A(r, t) with A being solely along
the y axis that results in the electromagnetic field described above.

In order for the scalar potential to vanish, we need to find ~A s.t.

~B = B0ẑ = ∇× ~A

~E = E0ŷ = −1

c

∂ ~A

∂t
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To solve, we apply the formula for the cross product, simplifying
according to the problem statement:

∇× ~A =

(
∂Az
∂y
− ∂Ay

∂z

)
x̂ +

(
∂Ax
∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay
∂x
− ∂Ax

∂y

)
ẑ

=
∂Ay
∂x

ẑ

= B0ẑ

Solving the simple system of DEs for ~A we obtain

~A = (B0x− cE0t) ŷ

2. (5 pts) Write the Hamiltonian for an electron in the field described above.
From chapter 3, the Hamiltonian is given by

H =
1

2m

[
P2 − e

c
(~P · ~A+ ~A · ~P) +

(e
c

)2
A2

]
=

1

2m

[
P 2
x + P 2

y + P 2
z −

e

c
~A · ~P +

(e
c

)2
A2

]
=

1

2m

[
P 2
x + P 2

y + P 2
z −

e

c
AyPy +

(e
c
Ay

)2]
=

1

2m

[
P 2
x + P 2

z +
(
Py −

e

c
Ay

)2]
We desire to write this in the form of the QHO in order to make solving
the 3rd part easier.

H =
1

2m

[
P2 − e

c
(~P · ~A+ ~A · ~P) +

(e
c

)2
A2

]
=

1

2m

[
P 2
x + P 2

z +
(
Py −

e

c
Ay

)2]
=

1

2m

[
P 2
x + P 2

z +
(
Py −

e

c
B0x+

e

c
cE0t

)2]
=

1

2m

[
P 2
x + P 2

z +m2ω2 (x− x0 − v0t)2
]

With the following definitions:

mω =
e

c
B0

v0 =
cE0

B0

Py = x0mω =
eB0x0
c

2



3. (5 pts) Assuming the wave function is of the form

ψ(r, t) = eikyy+ikzzφky,kz (x, t)

write the wave equation for φky,kz (x, t) where ~ky and ~kz are the eigen-
values of Py and Pz.

From the form above, we can see that φky,kz (x, t) is up to a phase and
time evolution, the solution to the QHO with argument x−x0− v0t.
Thus we can say that

φky,kz (x, t) = φn(x− x0 − v0t) ∗ e
−iεnt

~

where φn is the nth excited state of the QHO and εn is by definition

εn =
~2k2z
2m

+
mv20

2
+

(
n+

1

2

)
~ω =

~2k2z
2m

+
mc2E0

2B0
+

(
n+

1

2

)
~
eB0

c

3 Chapter 12, Exercise 2

1. One electron moves in a one-dimensional system and feels the interaction
of two atoms. Approximate the interaction between the electrons and the
atoms with the potential

V (x−R) = −βδ(x−R)

where R is the position of an atom.

Assuming that the atoms are a distance r apart, we can see that our
wavefunctions are

ψI(x) = Aek(x+r/2)

ψII(x) ∼ ekx + e−kx ∼ cosh kx

ψIII(x) = Ae−k(x−r/2)

Applying the boundary condition that ψ is continuous and lumping all
our constants together in one clump, we see that

A = cosh
kr

2
.

Given the delta potential, our second boundary condition
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~2

2m

(
∂

∂x
ψ(x)|y+ε −

∂

∂x
ψ(x)|y−ε

)
= −βψ(y)

yields us

~2

2m

(
−Ak + k sinh

−kr
2

)
= −βA

−Ak + k sinh
−kr

2
=
−2mβA

~2

−k sinh
kr

2
= A

(
k − 2mβ

~2

)
k sinh

kr

2
= cosh

kr

2

(
2mβ

~2
− k
)

k tanh
kr

2
=

2mβ

~2
− k

tanh
kr

2
=

2mβ

~2k
− 1

2. Find the potential between the two atoms at small r,

V (r → 0) ∼ V (r = 0)− αr

that is, find V (r = 0) and α. Do this by expanding the transcendental
equation in terms of r. Hint: First, find V (r = 0) by solving the tran-
scendental equation with r = 0. Take derivatives of the transcendental
equation with respect to r, then solve for dk/dr at r = 0, and finally find
dE/dr to obtain α.

Evaluating our answer in part 1 at r = 0, we get

0 =
2mβ

~2k
− 1

k =
2mβ

~2
.

Therefore,

E = −~2k2

2m

= − ~2

2m

(
2mβ

~2

)2

= −2mβ2

~2
.
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Following the hint and taking the derivative of the transcendental equation
with respect to r, we get

d

dr
tanh

kr

2
=

d

dr

(
2mβ

~2k
− 1

)
k

2
sech2 kr

2
|r=0 = −2mβ

~2k2
dk

dr
k

2
= −2mβ

~2k2
dk

dr

−~2k3

4mβ
=
dk

dr

− ~2

4mβ

(
2mβ

~2

)3

=
dk

dr

−2m2β2

~4
=
dk

dr
|r=0.

Taking dE/dr = α, we get

α =
dE

dr

=
dE

dk

dk

dr

= −~2k
m

(
−2m2β2

~4

)
=

~2

m

(
2mβ

~2

)(
2m2β2

~4

)
=

4m2β3

~4
.

In the end, we find

V (r → 0) ∼ V (r = 0)− αr

= −2mβ2

~2
− 4m2β3

~4
r.

3. Find the potential between the two atoms at large r,

V (r →∞) = −γ exp (−2k∞r)
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that is, find γ. Hint: Use first order perturbation theory, assuming the
unperturbed wave function is the bound state of one well, and the pertur-
bation is the interaction with the second well.

Our wavefunction is described as

ψ = Ae−k|r|

where A, our normalization constant, is found to be
√
k. Using first-order

perturbation, we find

Vnew =

∫
dr ψ∗Voldψ

=

∫
dr ke−2k|r|(−β)δ(r − ro)

= −βke−2kro ,

thus, γ = kβ where k = 2mβ/~2.
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