Chapter 3, 12 Presentation

Jeremiah Rowland and Bryan Stanley

1 Introduction

Chapters 3 and 12 deal with adjusting quantum mechanics to accommodate
classical electromagnetism and methods for studying many electron systems.

Relevant equations: The magnetic vector potential satisfies the following
relations
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In 4-Vector form, it is given as:

2 Subject Exam Spring 2000, Problem 4

An electron is placed in a constant magnetic field of strength B which lies along
the z axis. The electron also experiences an electric field E which lies along the
y axis. Neglect the coupling of the spin to the magnetic field.

1. (5 pts) Write down a vector potential A(r,t) with A being solely along
the y axis that results in the electromagnetic field described above.

In order for the scalar potential to vanish, we need to find A st
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To solve, we apply the formula for the cross product, simplifying
according to the problem statement:
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Solving the simple system of DEs for A we obtain
A = (Box — cEot)j

2. (5 pts) Write the Hamiltonian for an electron in the field described above.
From chapter 3, the Hamiltonian is given by
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We desire to write this in the form of the QHO in order to make solving
the 3rd part easier.
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With the following definitions:
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3. (5 pts) Assuming the wave function is of the form
1/1(13 t) = eikyy+ik2z¢k1}7kz (33, t)

write the wave equation for ¢y, . (z,t) where hk, and hk. are the eigen-
values of P, and P..

From the form above, we can see that ¢, . (z,t) is up to a phase and
time evolution, the solution to the QHO with argument x — xy — vpt.
Thus we can say that
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where ¢,, is the nth excited state of the QHO and ¢, is by definition
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Chapter 12, Exercise 2

1. One electron moves in a one-dimensional system and feels the interaction
of two atoms. Approximate the interaction between the electrons and the
atoms with the potential

V(x— R)=—-86(x — R)

where R is the position of an atom.

Assuming that the atoms are a distance r apart, we can see that our
wavefunctions are

bi(z) = A1)
Yrr(x) ~ e + e ~ cosh kx
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Applying the boundary condition that v is continuous and lumping all
our constants together in one clump, we see that

A= coshﬁ.
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Given the delta potential, our second boundary condition
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yields us
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2. Find the potential between the two atoms at small r,

Vir—=0)~V(r=0)—ar

that is, find V(r = 0) and «. Do this by expanding the transcendental
equation in terms of r. Hint: First, find V(r = 0) by solving the tran-
scendental equation with » = 0. Take derivatives of the transcendental
equation with respect to r, then solve for dk/dr at r = 0, and finally find
dE/dr to obtain «.

Evaluating our answer in part 1 at r = 0, we get
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Following the hint and taking the derivative of the transcendental equation
with respect to r, we get

itaunhﬁ = i <2m6 — 1)

dr 2 dr \ B2k
ﬁsechQ H| —0 = _2mB dk
2 2 " h2k2 dr
k. 2mpBdk
2 W2k dr
kS dk
_4m5 T dr
R (2mp\®  dk
i () ~ &
2m?p?  dk
— = gy l=o
Taking dE/dr = «, we get
__dE
“ar
_dE dk
~ dk dr
Rk 2m?p?
- ()
B h? [/ 2mp 2m? 32
- () (%57)
_ 4m253
==

In the end, we find
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. Find the potential between the two atoms at large r,

V(r — o0) = —vexp (—2koor)



that is, find . Hint: Use first order perturbation theory, assuming the
unperturbed wave function is the bound state of one well, and the pertur-
bation is the interaction with the second well.

Our wavefunction is described as

= Ae kIl

where A, our normalization constant, is found to be vk. Using first-order
perturbation, we find
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thus, v = kB where k = 2mp3/h?.



