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1 Potential Step
Consider a particle of mass m approaching a positive potential step from the x = +∞ direction
with wave number k. The potential step is larger than the kinetic energy of the approaching
particle. For x > a, the wave function has the form

 (x) = e−ikx − e2i�(k)eikx (1.1)

1.1 a)
Find the Phase shift �(k):
First, we note that we have the usual boundary conditions: (1)  is continuous at x = a , (2)
�rst derivative is continuous at x=a, and (3)  = 0 at x = 0. In region I, the wavefunction will
decay, so we have exponential solutions:

 I = Ae−qx + Beqx , q =
√
2m(V0 − E)/~2 (1.2)

The coe�cients A and B must be equal and opposite for  (0) = 0, so that

 I = Ae−qx − Aeqx = A sinh (qx) (1.3)

Applying BC (1), we �nd
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 I (a) =  I I (a) (1.4)

A sinh (qa) = e−ika − e2i�(k)eika = ei�(k)(e−ikae−i�(k) − ei�(k)eika) (1.5)

where k =
√
(2mE/~2). Applying BC (2),

qA cosh (qa) = ei�(k)(−ike−ikae−i�(k) − ikei�(k)eika) (1.6)

Dividing the two boundary conditions,

 I (a)
)x I (a)

=  I I (a)
)x I I (a)

(1.7)

tanh (qa)
q = tan (ka + �)

k (1.8)

Finally solving for � , we �nd

� = arctan(
k tanh (qa)

q ) − ka

1.2 b)
What is �(k) in the limit that V0 → ∞?
As V0 → ∞, q → ∞, since q =

√
2m(V0 − E)/~2. Thus,

lim
q→∞

tanh (qa) = eqa − e−qa
eqa + e−qa ≈ eqa

eqa = 1 (1.9)

Thus we have
arctan kq → arctan k

∞ → 0 (1.10)

∴ � = −ka for V0 → ∞ (1.11)

2 Delta Function Well
A particle of mass m feels the following potential

V (x) = −��(x), � > 0. (2.1)

Find the binding energy of the ground state. How many bound states are there?

2.1 a)
Since we are looking for the binding energy, the energy of the particle must be less than
zero, E < 0. We must �nd a relation for the energy, which is done by solving the Schrödinger
equation and applying the appropriate boundary conditions. The Schrödinger equation gives

− ~2

2m
d2 
dx2 − ��(x) = E . (2.2)
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We divide the problem into two regions: one with x < 0 and the other with x > 0. In both
these regions, the delta function vanishes and the Schrödinger equation reduces to:

− ~2

2m
d2 
dx2 = E . (2.3)

d2 
dx2 = �2 , � =

√
−2mE
~

(2.4)

The general solution is simply a linear combination of exponentials

 (x) =
{Ae−�x + Be�x , x < 0
Ce−�x + De�x , x > 0.

(2.5)

We now apply boundary conditions. Because the wave function cannot blow up as x → ∞
and x → −∞, we �nd that the solutions in both regions only contain one term

 (x) =
{Be�x , x < 0
Ce−�x , x > 0.

(2.6)

The wave function must be continuous at x = 0. This means that B = C . The Schrödinger
equation becomes

 (x) =
{Ce�x , x ≤ 0
Ce−�x , x ≥ 0. (2.7)

Finally, we apply the condition regarding the �rst derivative of the wave function. Normally,
the �rst derivative must be continuous. This condition is not true at points where the potential
is in�nite, such as at x = 0 for the delta function. If we integrate the Schrödinger equation as
written in eq. 2.2 from −" to " and take the limit that " → 0 we �nd

d 
dx

|||+" −
d 
dx

|||−" =
2m
~2

lim
"→0 ∫

+"

−"
��(x) (x)dx (2.8)

d 
dx

|||+" −
d 
dx

|||−" = −2m�
~2

 (0). (2.9)

Explicitly evaluating eq. 2.9 using eq. 2.7 results in

� = m�
~2

. (2.10)

Inserting � from eq. 2.4 and rearranging yields the energies for the bound states

E = m�2
2~2 . (2.11)

We notice that E depends solely on constants and � . Because � is �xed, there is only one bound
state of the delta-function well, so this is the energy of the ground state we were looking for.
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2.2 b)
Suppose we are asked to �nd the wave function for this singly bound state of the delta-function
well. We have done most of the work already since we have  (x) from eq. 2.7 and � from eq.
2.10. We just need to normalize  (x) to �nd C :

∫
+∞

−∞
| (x)|2dx = C2 ∫

0

−∞
e2�xdx + C2 ∫

+∞

0
e−2�xdx = C2

� = 1 ⟹ C =
√
m�
~

. (2.12)

The wave equation is then

 (x) =
⎧⎪⎪
⎨⎪⎪⎩

√
m�
~ em�x/~2 , x ≤ 0

√
m�
~ e−m�x/~2 , x ≥ 0.

(2.13)
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