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Problem 1

(Practice Exam Fall 2019 #8)
Consider a Bryan particle of mass m confined to a one-dimensional potential,
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It can decay to a Brianna particle of the same mass, but the Brianna particle does not feel the potential.
The Hamiltonian matrix element responsible for the decay is
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where the momentum of the Brianna particle is ik, the large length of the plane wave |k) is L, and the
constant « is small. What is the Bryan-particle decay rate? Present your answer in terms of o , a, b, V
and m.

Solution
To solve this problem, we begin with Fermi’s Golden Rule
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This important equation relates the matrix element |V,,;| to the decay rate I'. We are able to use this equation
by first identifying the matrix element as < 0, Bryan|V'|k, Brianna >. In this problem, the matrix element
is given, so you can easily square it to get in the correct format for the decay rate:
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[Vil? = | < 0, Bryan|V|k, Brianna > |* = —7 (2)

and substituted it above,
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The dimensional integral over all states can replace the summation of Fermi’s Golden Rule:
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where D is dimensions. In this case, we are dealing with a one-dimensional potential. Transitioning to the
integral form of Fermi’s Golden Rule then gives us the relation:
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Now we need to determine the initial and final energies to evaluate the delta function of this decay equation.
Since we have a Bryan particle decaying into a Brianna particle the initial energy will be equal to the energy
of the Bryan particle, E; = Eyyqan = E. The Brianna particle is a plane wave with energy E,, = Erignna =
h2 k>

.~ which is our final energy. Thus the ¢ function becomes:
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For this § function to apply to the integral, we want to isolate the factor of k inside the § function. To do
this, the Stanley Theorem gives us:

[ amntiatne) o) = s @

where g(k) = f(k) — fo . In the case of this problem, this applies as:
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From the delta function, we know:
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Which allows a simplification to the final value for the decay rate:
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Problem 2

(Subject Exam Spring 2020 #3)
Consider a beam of particles of momentum #k elastically scattering off three identical targets placed at the
following positions:

ﬁlz(z:O,y:O,z:O) (12)
Ry=(x=R,y=0,2=0) (13)
Rs=(zx=—-R,y=0,z=0) (14)

The direction of the scattered particles is denoted in spherical coordinates, with 6 describing the direction
relative to the beam (z) axis, and ¢ measuring the direction relative to the x axis in the x-y plane, i.e. if
the wave number for the scattered particle is k(1)

Eﬁ,f) = k() cos a, %J(Ef) = k() sin 6 cos o, E?(Jf) =k sin 6 sin ¢

(a) Consider scattering observed in the x-z plane (¢ = 0). At what polar angles 6 will the differential
cross section disappear?
(b) Repeat for scattering observed in the y-z plane (¢ = 90°).



Solution part a

In beginning to solve this scattering problem it is useful to draw the situation of the three target particles
and the incident beam in the coordinate plane.
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Figure 1: Black dots are identical target particles along the x-axis, fik is the incident beam along the z-axis.

We then start with the Fourier transform of the structure function that gives the contributions of the
individual target particles to the cross section. This is given as:

S(@) =Y e (15)
da
Applying the given positions of the target particles in this problem, the structure function yields:

S(@) = B 4 (T (16)

In the problem, we are given the components of k with the polar angle 6 and the azimuthal angle ¢. Since
the particles are along the x-axis, the values da are £RZ and 0Z. Thus the structure function becomes:
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and performing the dot product between the momentum transfer and the vector to the particle yields,
S(q’) _ eikRsin(O)cos(d)) +1+ efikRsin(H)cos(¢) (18)

Now, since the problem states that for part a, scattering is observed in the x-z plane, ¢ = 0, so cos¢p = 1,
the equation becomes:

S(q) = 1 + etkRsin(0) 4 p=ikRsin(0) — 1 4 9¢os(kRsin(6)) (19)

The specific aim in this problem of finding the angle 6 in which the differential cross section disappears, so
we set S(¢) = 0. This allows us to write:

S(q) = 1+ 2cos(kRsin(0)) =0 (20)
and we can re-write it such that 1
cos(kRsin(0)) = -3 (21)

Since Cosine of %" + 27n is —%, we can now write:
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which solves as:
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where n is an integer resulting from the periodic nature of the cosine in 2cos(kRsin(6)) and gives us the
number of zero scattering angles as a result of the arc-sine being limited to values below 1.

0 = sin™(

Solution part b

We are now observing scattering in the y-z plane, so now apply ¢ = 90° to Eq 18 to get:
c0s(90°) =0 (24)
and substituting back into the structure function yields:
S(§) = etkRsm(O)%0 4 1 4 o—ikRsin(0):0 _ g (25)

Since there is no 6 value for which this structure function equals 0, the differential cross section will not
disappear.



