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Problem 1

(Practice Exam Fall 2019 #8)
Consider a Bryan particle of mass m confined to a one-dimensional potential,

V(x) =


∞ x ≤ −a
0 −a ≤ x ≤ a
∞ a ≤ x

It can decay to a Brianna particle of the same mass, but the Brianna particle does not feel the potential.
The Hamiltonian matrix element responsible for the decay is

〈0, Bryan|V |k,Brianna〉 = αe−k2b2/2
√
L

where the momentum of the Brianna particle is ~k, the large length of the plane wave |k〉 is L, and the
constant α is small. What is the Bryan-particle decay rate? Present your answer in terms of α , a, b, V
and m.

Solution

To solve this problem, we begin with Fermi’s Golden Rule

∂

∂t
Pi→n(t) = Γi→n =

2π

~
∑
k

|Vni|2δ(En − Ei) (1)

This important equation relates the matrix element |Vni| to the decay rate Γ. We are able to use this equation
by first identifying the matrix element as < 0, Bryan|V |k,Brianna >. In this problem, the matrix element
is given, so you can easily square it to get in the correct format for the decay rate:

|Vni|2 = | < 0, Bryan|V |k,Brianna > |2 =
α2e−k

2b2

L
(2)

and substituted it above,

Γi→n =
2π

~
∑
k

α2e−k
2b2

L
δ(En − Ei) (3)

The dimensional integral over all states can replace the summation of Fermi’s Golden Rule:∑
k

→ (
L

2π
)D

∫ ∞
−∞

dDk (4)
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where D is dimensions. In this case, we are dealing with a one-dimensional potential. Transitioning to the
integral form of Fermi’s Golden Rule then gives us the relation:

Γi→n =
α2

~

∫ ∞
−∞

e−k
2b2δ(En − Ei)dk (5)

Now we need to determine the initial and final energies to evaluate the delta function of this decay equation.
Since we have a Bryan particle decaying into a Brianna particle the initial energy will be equal to the energy
of the Bryan particle, Ei = EBryan = E. The Brianna particle is a plane wave with energy En = EBrianna =
~2k2

2m , which is our final energy. Thus the δ function becomes:

δ(En − Ei)→ δ(E − ~2k2

2m
) (6)

For this δ function to apply to the integral, we want to isolate the factor of k inside the δ function. To do
this, the Stanley Theorem gives us: ∫ ∞

−∞
dkh(k)δ(f(k)− f0) =

h(k)

|g′(k)|
(7)

where g(k) = f(k)− f0 . In the case of this problem, this applies as:

Γi→n =

∫ ∞
−∞

e−k
2b2δ(En − Ei)dk =

∫ ∞
−∞

e−k
2b2δ(E − ~2k2

2m
)dk =

e−k
2b2

| − ~2k
2m |

(8)

From the delta function, we know:

E =
~2k2

2m
(9)

k =

√
2mE

~2
(10)

Which allows a simplification to the final value for the decay rate:

Γi→n =
e−2mEb

2/~2

| − ~2k
2m |

=

√
2m

~2E
e−2mEb

2/~2

(11)

Problem 2

(Subject Exam Spring 2020 #3)
Consider a beam of particles of momentum ~k elastically scattering off three identical targets placed at the
following positions:

~R1 = (x = 0, y = 0, z = 0) (12)

~R2 = (x = R, y = 0, z = 0) (13)

~R3 = (x = −R, y = 0, z = 0) (14)

The direction of the scattered particles is denoted in spherical coordinates, with θ describing the direction
relative to the beam (z) axis, and φ measuring the direction relative to the x axis in the x-y plane, i.e. if

the wave number for the scattered particle is ~k(f),

~k
(f)
z = ~k(f) cos θ, ~k

(f)
x = ~k(f) sin θ cosφ, ~k

(f)
y = ~k(f) sin θ sinφ

(a) Consider scattering observed in the x-z plane (φ = 0). At what polar angles θ will the differential
cross section disappear?

(b) Repeat for scattering observed in the y-z plane (φ = 90◦).
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Solution part a

In beginning to solve this scattering problem it is useful to draw the situation of the three target particles
and the incident beam in the coordinate plane.

Figure 1: Black dots are identical target particles along the x-axis, ~k is the incident beam along the z-axis.

We then start with the Fourier transform of the structure function that gives the contributions of the
individual target particles to the cross section. This is given as:

S(~q) =
∑
δa

ei~q·δ~a (15)

Applying the given positions of the target particles in this problem, the structure function yields:

S(~q) = ei~q·
~R1 + ei~q·

~R2 + ei~q·
~R3 (16)

In the problem, we are given the components of k with the polar angle θ and the azimuthal angle φ. Since
the particles are along the x-axis, the values δ~a are ±Rx̂ and 0x̂. Thus the structure function becomes:

S(~q) = ei~q·Rx̂ + e0 + e−i~q·Rx̂ (17)

and performing the dot product between the momentum transfer and the vector to the particle yields,

S(~q) = eikRsin(θ)cos(φ) + 1 + e−ikRsin(θ)cos(φ) (18)

Now, since the problem states that for part a, scattering is observed in the x-z plane, φ = 0, so cosφ = 1,
the equation becomes:

S(~q) = 1 + eikRsin(θ) + e−ikRsin(θ) = 1 + 2cos(kRsin(θ)) (19)

The specific aim in this problem of finding the angle θ in which the differential cross section disappears, so
we set S(~q) = 0. This allows us to write:

S(~q) = 1 + 2cos(kRsin(θ)) = 0 (20)

and we can re-write it such that

cos(kRsin(θ)) = −1

2
(21)

Since Cosine of 2π
3 + 2πn is − 1

2 , we can now write:

2π

3
+ 2πn = kRsin(θ) (22)
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which solves as:

θ = sin−1(
2π

3kR
+

2πn

kR
) (23)

where n is an integer resulting from the periodic nature of the cosine in 2cos(kRsin(θ)) and gives us the
number of zero scattering angles as a result of the arc-sine being limited to values below 1.

Solution part b

We are now observing scattering in the y-z plane, so now apply φ = 90◦ to Eq 18 to get:

cos(90◦) = 0 (24)

and substituting back into the structure function yields:

S(~q) = eikRsin(θ)∗0 + 1 + e−ikRsin(θ)∗0 = 3 (25)

Since there is no θ value for which this structure function equals 0, the differential cross section will not
disappear.
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