Chapters 6 and 7 : Perturbations, Fermi's Golden Rule, and Scattering

Julia Hinds, Austin Schleusner

April 19, 2021

Problem 1

(Practice Exam Fall 2019 \#8)
Consider a Bryan particle of mass \mathbf{m} confined to a one-dimensional potential,

$$
\mathrm{V}(\mathrm{x})= \begin{cases}\infty & x \leq-a \\ 0 & -a \leq x \leq a \\ \infty & a \leq x\end{cases}
$$

It can decay to a Brianna particle of the same mass, but the Brianna particle does not feel the potential. The Hamiltonian matrix element responsible for the decay is

$$
\langle 0, \text { Bryan }| V \mid k, \text { Brianna }\rangle=\frac{\alpha e^{-k^{2} b^{2} / 2}}{\sqrt{L}}
$$

where the momentum of the Brianna particle is $\hbar \mathbf{k}$, the large length of the plane wave $|k\rangle$ is \mathbf{L}, and the constant α is small. What is the Bryan-particle decay rate? Present your answer in terms of $\alpha, \mathbf{a}, \mathbf{b}, \mathbf{V}$ and \mathbf{m}.

Solution

To solve this problem, we begin with Fermi's Golden Rule

$$
\begin{equation*}
\frac{\partial}{\partial t} P_{i \rightarrow n}(t)=\Gamma_{i \rightarrow n}=\frac{2 \pi}{\hbar} \sum_{k}\left|V_{n i}\right|^{2} \delta\left(E_{n}-E_{i}\right) \tag{1}
\end{equation*}
$$

This important equation relates the matrix element $\left|V_{n i}\right|$ to the decay rate Γ. We are able to use this equation by first identifying the matrix element as $<0, \operatorname{Bryan}|V| k, B r i a n n a>$. In this problem, the matrix element is given, so you can easily square it to get in the correct format for the decay rate:

$$
\begin{equation*}
\left|V_{n i}\right|^{2}=\mid<0, \text { Bryan }|V| k, \text { Brianna }>\left.\right|^{2}=\frac{\alpha^{2} e^{-k^{2} b^{2}}}{L} \tag{2}
\end{equation*}
$$

and substituted it above,

$$
\begin{equation*}
\Gamma_{i \rightarrow n}=\frac{2 \pi}{\hbar} \sum_{k} \frac{\alpha^{2} e^{-k^{2} b^{2}}}{L} \delta\left(E_{n}-E_{i}\right) \tag{3}
\end{equation*}
$$

The dimensional integral over all states can replace the summation of Fermi's Golden Rule:

$$
\begin{equation*}
\sum_{k} \rightarrow\left(\frac{L}{2 \pi}\right)^{D} \int_{-\infty}^{\infty} d^{D} k \tag{4}
\end{equation*}
$$

where D is dimensions. In this case, we are dealing with a one-dimensional potential. Transitioning to the integral form of Fermi's Golden Rule then gives us the relation:

$$
\begin{equation*}
\Gamma_{i \rightarrow n}=\frac{\alpha^{2}}{\hbar} \int_{-\infty}^{\infty} e^{-k^{2} b^{2}} \delta\left(E_{n}-E_{i}\right) d k \tag{5}
\end{equation*}
$$

Now we need to determine the initial and final energies to evaluate the delta function of this decay equation. Since we have a Bryan particle decaying into a Brianna particle the initial energy will be equal to the energy of the Bryan particle, $E_{i}=E_{\text {Bryan }}=E$. The Brianna particle is a plane wave with energy $E_{n}=E_{\text {Brianna }}=$ $\frac{\hbar^{2} k^{2}}{2 m}$, which is our final energy. Thus the δ function becomes:

$$
\begin{equation*}
\delta\left(E_{n}-E_{i}\right) \rightarrow \delta\left(E-\frac{\hbar^{2} k^{2}}{2 m}\right) \tag{6}
\end{equation*}
$$

For this δ function to apply to the integral, we want to isolate the factor of k inside the δ function. To do this, the Stanley Theorem gives us:

$$
\begin{equation*}
\int_{-\infty}^{\infty} d k h(k) \delta\left(f(k)-f_{0}\right)=\frac{h(k)}{\left|g^{\prime}(k)\right|} \tag{7}
\end{equation*}
$$

where $g(k)=f(k)-f_{0}$. In the case of this problem, this applies as:

$$
\begin{equation*}
\Gamma_{i \rightarrow n}=\int_{-\infty}^{\infty} e^{-k^{2} b^{2}} \delta\left(E_{n}-E_{i}\right) d k=\int_{-\infty}^{\infty} e^{-k^{2} b^{2}} \delta\left(E-\frac{\hbar^{2} k^{2}}{2 m}\right) d k=\frac{e^{-k^{2} b^{2}}}{\left|-\frac{\hbar^{2} k}{2 m}\right|} \tag{8}
\end{equation*}
$$

From the delta function, we know:

$$
\begin{gather*}
E=\frac{\hbar^{2} k^{2}}{2 m} \tag{9}\\
k=\sqrt{\frac{2 m E}{\hbar^{2}}} \tag{10}
\end{gather*}
$$

Which allows a simplification to the final value for the decay rate:

$$
\begin{equation*}
\Gamma_{i \rightarrow n}=\frac{e^{-2 m E b^{2} / \hbar^{2}}}{\left|-\frac{\hbar^{2} k}{2 m}\right|}=\sqrt{\frac{2 m}{\hbar^{2} E}} e^{-2 m E b^{2} / \hbar^{2}} \tag{11}
\end{equation*}
$$

Problem 2

(Subject Exam Spring 2020 \#3)
Consider a beam of particles of momentum $\hbar \mathbf{k}$ elastically scattering off three identical targets placed at the following positions:

$$
\begin{array}{r}
\overrightarrow{R_{1}}=(x=0, y=0, z=0) \\
\overrightarrow{R_{2}}=(x=R, y=0, z=0) \\
\overrightarrow{R_{3}}=(x=-R, y=0, z=0) \tag{14}
\end{array}
$$

The direction of the scattered particles is denoted in spherical coordinates, with θ describing the direction relative to the beam (\mathbf{z}) axis, and ϕ measuring the direction relative to the \mathbf{x} axis in the $\mathbf{x}-\mathbf{y}$ plane, i.e. if the wave number for the scattered particle is $\vec{k}^{(f)}$,

$$
\vec{k}_{z}^{(f)}=\vec{k}^{(f)} \cos \theta, \vec{k}_{x}^{(f)}=\vec{k}^{(f)} \sin \theta \cos \phi, \vec{k}_{y}^{(f)}=\vec{k}^{(f)} \sin \theta \sin \phi
$$

(a) Consider scattering observed in the $\mathbf{x - z}$ plane $(\phi=0)$. At what polar angles θ will the differential cross section disappear?
(b) Repeat for scattering observed in the $\mathbf{y}-\mathrm{z}$ plane $\left(\phi=90^{\circ}\right)$.

Solution part a

In beginning to solve this scattering problem it is useful to draw the situation of the three target particles and the incident beam in the coordinate plane.

Figure 1: Black dots are identical target particles along the x -axis, $\hbar \mathrm{k}$ is the incident beam along the z -axis.
We then start with the Fourier transform of the structure function that gives the contributions of the individual target particles to the cross section. This is given as:

$$
\begin{equation*}
S(\vec{q})=\sum_{\delta a} e^{i \vec{q} \cdot \delta \vec{a}} \tag{15}
\end{equation*}
$$

Applying the given positions of the target particles in this problem, the structure function yields:

$$
\begin{equation*}
S(\vec{q})=e^{i \vec{q} \cdot \overrightarrow{R_{1}}}+e^{i \vec{q} \cdot \overrightarrow{R_{2}}}+e^{i \vec{q} \cdot \overrightarrow{R_{3}}} \tag{16}
\end{equation*}
$$

In the problem, we are given the components of k with the polar angle θ and the azimuthal angle ϕ. Since the particles are along the x-axis, the values $\delta \vec{a}$ are $\pm R \hat{x}$ and $0 \hat{x}$. Thus the structure function becomes:

$$
\begin{equation*}
S(\vec{q})=e^{i \vec{q} \cdot R \hat{x}}+e^{0}+e^{-i \vec{q} \cdot R \hat{x}} \tag{17}
\end{equation*}
$$

and performing the dot product between the momentum transfer and the vector to the particle yields,

$$
\begin{equation*}
S(\vec{q})=e^{i k R \sin (\theta) \cos (\phi)}+1+e^{-i k R \sin (\theta) \cos (\phi)} \tag{18}
\end{equation*}
$$

Now, since the problem states that for part a, scattering is observed in the $\mathrm{x}-\mathrm{z}$ plane, $\phi=0$, so $\cos \phi=1$, the equation becomes:

$$
\begin{equation*}
S(\vec{q})=1+e^{i k R \sin (\theta)}+e^{-i k R \sin (\theta)}=1+2 \cos (k R \sin (\theta)) \tag{19}
\end{equation*}
$$

The specific aim in this problem of finding the angle θ in which the differential cross section disappears, so we set $S(\vec{q})=0$. This allows us to write:

$$
\begin{equation*}
S(\vec{q})=1+2 \cos (k R \sin (\theta))=0 \tag{20}
\end{equation*}
$$

and we can re-write it such that

$$
\begin{equation*}
\cos (k R \sin (\theta))=-\frac{1}{2} \tag{21}
\end{equation*}
$$

Since Cosine of $\frac{2 \pi}{3}+2 \pi n$ is $-\frac{1}{2}$, we can now write:

$$
\begin{equation*}
\frac{2 \pi}{3}+2 \pi n=k R \sin (\theta) \tag{22}
\end{equation*}
$$

which solves as:

$$
\begin{equation*}
\theta=\sin ^{-1}\left(\frac{2 \pi}{3 k R}+\frac{2 \pi n}{k R}\right) \tag{23}
\end{equation*}
$$

where n is an integer resulting from the periodic nature of the cosine in $2 \cos (k R \sin (\theta))$ and gives us the number of zero scattering angles as a result of the arc-sine being limited to values below 1 .

Solution part b

We are now observing scattering in the y-z plane, so now apply $\phi=90^{\circ}$ to Eq 18 to get:

$$
\begin{equation*}
\cos \left(90^{\circ}\right)=0 \tag{24}
\end{equation*}
$$

and substituting back into the structure function yields:

$$
\begin{equation*}
S(\vec{q})=e^{i k R \sin (\theta) * 0}+1+e^{-i k R \sin (\theta) * 0}=3 \tag{25}
\end{equation*}
$$

Since there is no θ value for which this structure function equals 0 , the differential cross section will not disappear.

