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Problem 1: Show whether or not the following terms are invariant under par-
ity and time reversal.
(Proving statements from lecture notes pg. 91)

a) ~p2

2m

b) ~p · ~r

c) ~L · ~p

d) ~S · ~B

e) ~p · ~A

Parity ⇒ Space inversion

~r ⇒ −~r

Time Reversal ⇒ Reversal of Motion

t⇒ −t

Analyize how an operator depends on ~r or t.

Recall: Momentum goes like

m
d~r

dt

Both the coordinate and momentum operators should flip sign under parity.
Momentum also flips sign under time reversal, but coordinate does not. The
first three terms can be solved with this in mind.

a)

1

2m
Π(~p · ~p)Π−1 =

1

2m
(Π(~p)Π−1 ·Π(~p)Π−1) =

1

2m
(−~p) · (−~p) =

~p2

2m

1

2m
Θ(~p · ~p)Θ−1 =

1

2m
(Θ(~p)Θ−1 ·Θ(~p)Θ−1) =

1

2m
(−~p) · (−~p) =

~p2

2m

1



Therefore, invariant under both.

b)
Π(~p · ~r)Π−1 = Π(~p)Π−1 ·Π(~r)Π−1 = ~−p · ~−r = ~p · ~r

Θ(~p · ~r)Θ−1 = Θ(~p)Θ−1 ·Θ(~r)Θ−1 = ~−p · ~r

Therefore, invariant under parity, not invariant under time reversal.

c)Angular momentum come from the relation

~L = ~r × ~p

Π(~L · ~p)Π−1 = Π[(~r × ~p) · ~p]Π−1 = Π~rΠ−1 ×Π~pΠ−1 ·Π~pΠ−1 =

((−~r)× (−~p)) · ( ~−p) = −~L · ~p

Θ(~L · ~p)Θ−1 = Θ[(~r × ~p) · ~p]Θ−1 = Θ~rΘ−1 ×Θ~pΘ−1 ·Θ~pΘ−1 =

((~r)× (−~p)) · ( ~−p) = ~L · ~p

Therefore, not invariant under parity, invariant under time reversal.

Now consider how ~B, ~A, and ~S behave, based on if they are even or odd oper-
ators under parity or time reversal.

A kind of shorthand is to remember that ~J and ~S both transform like ~L. On a
test, this is a fast (non-rigorous) way to think of what they will do here.

For ~A and ~B, we know the potential ~A depends on both coordinate and time, so
it will be odd under both. ~B = ∇× ~A, and nabla is coordinate dependent, there-
fore it is odd under parity and even under time reversal. For ~B the whole thing
will end up odd-odd for parity (so even) and odd-even for time reversal (so odd).

Π ~BΠ−1 = ~B Π ~AΠ−1 = − ~A Π~SΠ−1 = ~S
Θ ~BΘ−1 = − ~B Θ ~AΘ−1 = − ~A Θ~SΘ−1 = −~S
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d)

Π(~S · ~B)Π−1 = Π~SΠ−1 ·Π ~BΠ−1 = ~S · ~B

Θ(~S · ~B)Θ−1 = Θ~SΘ−1 ·Θ ~BΘ−1 = (−~S) · (− ~B) = ~S · ~B

Invariant under both.

e)

Π(~p · ~A)Π−1 = Π~pΠ−1 ·Π ~AΠ−1 = (−~p) · (− ~A) = ~p · ~A

Θ(~p · ~A)Θ−1 = Θ~pΘ−1 ·Θ ~AΘ−1 = (−~p) · (− ~A) = ~p · ~A

Invariant under both.

Problem 2: Question 4.12 Sakurai

The Hamiltonian for a system is given by:

H = AS2
z +B(S2

x − S2
y) (1)

Solve this problem exactly to find the normalized energy eigenstates and eigen-
values. (A spin-dependent Hamiltonian of this kind actually appears in crystal
physics.) Is the Hamiltonian invariant under time reversal? How do the nor-
malized eigenstates you obtained transform under time reversal?

Solution:

First, we are dealing with a spin 1 system, l = 1, m = −1, 0, 1. We also
have,

Sz |l,m〉 = ~m |l,m〉 −→ 〈l, n|Sz |l,m〉 = ~m 〈n|m〉 (2)

So,
(Sz)nm = ~mδnm (3)

Sz = ~

1 0 0
0 0 0
0 0 −1

 (4)

S2
z = ~2

1 0 0
0 0 0
0 0 1

 (5)

Now to get S2
x and S2

y , recall that we define the raising and lowering operators
in the following way:

S± = Sx ± iSy (6)
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Since we know the effect of the lowering and raising operators on a spin state,
we can now calculate the matrix elements of the rest of the relevant operators:

〈1,m|Sx |1, n〉 = 〈1,m| 1
2

(S+ + S−) |1, n〉 (7)

1

2
〈1,m|S+ |1, n〉+

1

2
〈1,m|S− |1, n〉 =

1

2
~
√

(1−m)(1 +m+ 1)δn,m+1 +
1

2
~
√

(1 +m)(1−m+ 1)δn,m−1

In matrix representation:

Sx = ~
√

2

2

0 1 0
0 0 1
0 0 0

 + ~
√

2

2

0 0 0
1 0 0
0 1 0

 (8)

S2
x =

~2

2

1 0 1
0 2 0
1 0 1

 (9)

Similarly for Sy:

Sy =
S+ − S−

2i
(10)

〈1,m|Sy |1, n〉 = 〈1,m| 1

2i
(S+ − S−) |1, n〉 (11)

1

2i
〈1,m|S+ |1, n〉 −

1

2i
〈1,m|S− |1, n〉 =

1

2i
~
√

(1−m)(1 +m+ 1)δn,m+1 −
1

2i
~
√

(1 +m)(1−m+ 1)δn,m−1

Which gives us the matrix:

Sy = ~
√

2

2i

 0 1 0
−1 0 1
0 −1 0

 (12)

S2
y =

~2

2

 1 0 −1
0 2 0
−1 0 1

 (13)

After all of that, we can now write our Hamiltonian as:

H = AS2
z +B(S2

x − S2
y) =̇~2

A 0 B
0 0 0
B 0 A

 (14)
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To find the eigenvalues and eigenvectors, we have to solve the equation:

det(H − λI) = 0 (15)

Just use Mathematica to get,

λ1 = 0

λ2 = A−B
λ3 = A+B

And the eiegenstates,

|λ1〉 =

0
1
0

 (16)

|λ2〉 =
1√
2

−1
0
1

 (17)

|λ3〉 =
1√
2

1
0
1

 (18)

Now we answer the question, “Is the Hamiltonian invariant under time re-
versal?” We must note that ΘJΘ−1 = −J from Sakurai. The J must be odd
under time reversal to preserve the commutation relation:

[Ji, Jj ] = i~εijkJk (19)

From this it is quick to find that:

ΘHΘ−1 = Θ(AS2
z +B(S2

x − S2
y))Θ−1

= AΘS2
zΘ−1 +BΘS2

xΘ−1 −BΘS2
yΘ−1

= AΘSzΘ−1ΘSzΘ−1 +BΘSxΘ−1ΘSxΘ−1 −BΘSyΘ−1ΘSyΘ−1

= AS2
z +B(S2

x − S2
y) = H

So we find that this specific spin-dependent Hamiltonian is invariant under time
reversal. What about the eigenstates? We start with fact that,

Θ |j,m〉 = (−1)m |j,−m〉 (20)

which can be found in Sakurai (4.4.78) or Scott’s lecture notes (5.20 in the Time
Reversal and Angular Momentum section). We also must keep in mind that the
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basis we are using for spin-1 particles is:

|1,m = 1〉 =

1
0
0

 ; |1,m = 0〉 =

0
1
0

 ; |1,m = −1〉 =

0
0
1



Now we can rewrite our eigenvectors in terms of the basis vectors,

|λ1〉 = |1, 0〉

|λ2〉 =
1√
2

(− |1, 1〉+ |1,−1〉)

|λ3〉 =
1√
2

(|1, 1〉+ |1,−1〉)

which makes checking the time reversal much simpler.

Θ |λ1〉 = Θ |1, 0〉
= |1, 0〉
= |λ1〉

Θ |λ2〉 =
1√
2

(−Θ |1, 1〉+ Θ |1,−1〉)

=
1√
2

(|1,−1〉 − |1, 1〉)

= |λ2〉

Θ |λ3〉 =
1√
2

(Θ |1, 1〉+ Θ |1,−1〉)

=
1√
2

(− |1,−1〉 − |1, 1〉)

= − |λ3〉

So we find that |λ3〉 is odd under time reversal where the others are even. This
exercise also shows that these combinations of states are eigenstates of the time
reversal operator, as mentioned at the end of Section 5.4 of Scott’s notes.
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