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Chapter 5: Symmetries and Conservation Laws

1 Overview

1.1 Parity Operator Π

The parity operator Π flips the sign of one or more spatial coordinates. For a three-
dimensional transformation this corresponds to a planar reflection of each coordinate and
can be expressed as x → −x, y → −y, z → −z. The symmetry of an operator is even under
parity if its sign is conserved and odd if its sign changes.

This is especially useful in determining whether a matrix element ⟨Ψl,s|A |Ψl′,s′⟩ vanishes
(where Ψi are spherical wave functions). The integral of the matrix element will give zero if
the overall parity is odd.

As a quick demonstration, we can consider this for some simple spherical harmonic wave
functions and an even parity operator. ⟨l = 0,m = 0| z2 |l = 1,m = 0⟩. Now |l = 1,m = 0⟩ =
1√
4π

and |l = 0,m = 0⟩ =
√

3
4π

cos θ and in spherical coordinates z = r cos θ. So evaluating

this matrix element results in∫∫∫
1√
4π

r2 cos2 θ

√
3

4π
cos θdrd cos θdϕ (1)

Looking just at the polar dependence, we have:
∫ −1

1
cos3 d cos θ → (−1)4 − (1)4 = 0. So the

matrix element disappears.
This is the case if either the operator is odd and the wave functions have the same parity

or if the operator is even and the wave functions have opposite parity. The parity of the
wavefunction only depends on the orbital quantum number l via Π |Ψl,s⟩ = (−1)l |Ψl,s⟩.

1.2 Time Reversal Operator Θ

The time reversal operator Θ preserves the coordinates and instead reverses the time variable
t → −t. In quantum mechanics the time reversal operator also involves taking the complex
conjugate i → −i. In general, operators are even or odd under time reversal unless they are
a linear combination of an odd and an even operator.

2 Practice Problems (cf. Lecture Notes p. 99)

We will now cover a number of operator combinations common in Hamiltonians and deter-
mine their action under parity and time reversal.

2.1 Problem 1: p2

2m

The quantum momentum operator is defined as p = −iℏ∇r. Now, the gradient is dependent
on spatial coordinates so it is odd under parity and the momentum is odd under parity. The
gradient does not depend on time but the quantum time reversal operator also requires that
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we take the complex conjugate of the operator. So the momentum is also odd under time
reversal, as we expect analogously to the classical case.

Now, in the case of this operator p2

2m
we can think of this as p·p

2m
. It is easy to see this will

be even under any operation, as both momentum operators will be equally affected and their
dot product will be even. So p2

2m
will be even under parity and time reversal. This applies

to the square of any operator.

2.2 Problem 2: p · r
We’ve already considered the momentum operator. The position operator r is odd under
parity by definition and has no time dependence or complex constituent so it is even under
time reversal. As a result we can consider the individual behaviour under the transformations
for the overall result.

Π(p · r)Π−1 → ΠpΠ−1 · ΠrΠ−1 → (−p) · (−r) → p · r (2)

⇒ Even under parity

Θ(p · r)Θ−1 → ΘpΘ−1 ·ΘrΘ−1 → (−p) · r → −(p · r) (3)

⇒ Odd under time reversal

2.3 Problem 3: L · p
The angular momentum operator L ≡ r × p can be treated like the last example p · r since
the cross product is compatible with scalar multiplication.

Π(r × p)Π−1 → (−r)× (−p) → p · r (4)

⇒ Even under parity, and as a side note, this is a defining property shared by all pseudovec-
tors.

Θ(r × p)Θ−1 → r × (−p) → −(r × p) (5)

⇒ Odd under time reversal
So then, considering our operator at hand:

Π(L · p)Π−1 → L · (−p) → −(L · p) (6)

⇒ Odd under parity

Θ(L · p)Θ−1 → (−L) · (−p) → L · p (7)

⇒ Even under time reversal

3 Derivation of Time Reversal and Parity of the elec-

tromagnetic Fields and the Vector Potential

3.1 Uses of Vector Potential

E⃗ =−∇r⃗ϕ− ∂tA⃗ B⃗ =∇r⃗XA⃗
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3.2 Magnetic field

B⃗ ∝ I⃗Xr⃗ ∝ v⃗Xr⃗
B⃗ ∝ (Vyrz−Vzry)x̂−(Vxrz−Vzrx)ŷ+(Vxry−
Vyrx)ẑ

3.2.1 Time Reversal

Vi =
dri
dt

Therefore Vi will change under time reversal
and ri will not change under time reversal
thus ΘViriΘ

−1 = ΘViΘ
−1 ΘriΘ

−1 = −Viri
⇒ Therefore, ΘBΘ−1 = -B.

3.2.2 Parity

Vi =
dri
dt

Vi will change under parity
ri will change under parity
thus ΠViriΠ

−1 = (−Vi)(−ri) = Viri.

⇒ Therefore, ΠB⃗Π−1 = B⃗.

3.3 Vector Potential A⃗

3.3.1 Time Reversal

We know that ΘB⃗Θ−1 = -B⃗
Θ∇r⃗XA⃗Θ−1 must equal -(∇r⃗XA⃗)

Θ∇r⃗XA⃗Θ−1 = Θ∇r⃗Θ
−1 X ΘA⃗Θ−1

Θ∇r⃗Θ
−1 = ∇r⃗ because ∇r⃗ is not a function

of time
Therefore, for ΘB⃗Θ−1 = -B⃗, ΘA⃗Θ−1 must
equal -A⃗

Θ∇r̂Θ
−1 X ΘAΘ−1 = ∇r̂ X -A = -B

⇒ Therefore A is odd under Time reversal.

3.3.2 Parity

We know ΠB⃗Π−1 = B⃗
Π∇r⃗XA⃗Π−1 must equal ∇r⃗XA⃗
Π∇r⃗XA⃗Π−1 = Π∇r⃗Π

−1 X ΠA⃗Π−1

Π∇r⃗Π
−1 = -∇r⃗ because ∇r⃗ in a function of

position
Therefore, for ΠB⃗Π−1 = B⃗, ΠA⃗Π−1 must
equal -A⃗
Π∇rΠ

−1 X ΠA⃗Π−1 = -∇r⃗ X -A⃗ = B⃗
⇒ Therefore A⃗ is odd under parity

3.4 Electric Field E⃗

3.4.1 Time Reversal

ΘE⃗Θ−1 = Θ(−∇r⃗ϕ− ∂tA⃗)Θ
−1

Θ(−∇r⃗ϕ)Θ
−1 - Θ∂tA⃗Θ

−1

Θ(−∇r⃗)Θ
−1 ΘϕΘ−1- Θ∂tΘ

−1ΘA⃗Θ−1

Θ(−∇r⃗)Θ
−1 = (−∇r⃗) because (−∇r⃗) is not

a function of time
ΘϕΘ−1 = ϕ because, ”In fact, for all Lorentz
four-vectors, the three spatial components
must have the opposite behavior under time
reversal as the “zeroth“ component” (Scott
Pratt)
Θ∂tΘ

−1 = -∂t because ∂t is a function of time
ΘA⃗Θ−1 = -A⃗
ΘE⃗Θ−1 = Θ(−∇r⃗ϕ − ∂tA⃗)Θ

−1 = (−∇r⃗ϕ −
∂tA⃗) = E⃗
⇒ Therefore E even under Time reversal

3.4.2 Parity

ΠE⃗Π−1 = Π(−∇r⃗ϕ− ∂tA⃗)Π
−1

Π(−∇r⃗ϕ)Π
−1 - Π∂tA⃗Π

−1

Π(−∇r⃗)Π
−1 ΠϕΠ−1- Π∂tΠ

−1 ΠA⃗Π−1

Π(−∇r⃗)Π
−1 = (∇r⃗) because (∇r⃗) is a func-

tion of space
ΠϕΠ−1 = ϕ because each part of the equation
need to be changed by the same sign and the
second half did change sign
Π∂tΠ

−1 = ∂t because ∂t is not a function of
space
ΠA⃗Π−1 = -A⃗
ΠE⃗Π−1 = Π(−∇r⃗ϕ−∂tA⃗)Π

−1 = (∇r⃗ϕ+∂tA⃗)

= -E⃗
⇒ Therefore E odd under parity
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4 Summary: Parity and Time Reversal of Important

Operators

The behaviour of a specific operator under parity and time reversal depends on their relation
with the transformed coordinate and time respectively. The following table shows how
frequently occurring operators transform.

Operator Parity Π Time Reversal Θ

Time t t (even) -t (odd)
Position Vector r⃗ −r⃗ (odd) r⃗ (even)
Velocity Vector v⃗ = ∂tr⃗ −v⃗ (odd) −v⃗ (odd)
Momentum p⃗ = −iℏ∇r⃗ −p⃗ (odd) −p⃗ (odd)

Angular Momentum L⃗ = r⃗ × p⃗ L⃗ (even) −L⃗ (odd)
Electric Potential Φ Φ (even) Φ (even)

Vector Potential A⃗ −A⃗ (odd) −A⃗ (odd)

Electric field E⃗ = −∇r⃗Φ− ∂tA⃗ −E⃗ (odd) E⃗ (even)

Magnetic Field B⃗ = ∇r⃗ × A⃗ B⃗ (even) −B⃗ (odd)

Electric Current Density j⃗ −j⃗ (odd) −j⃗ (odd)
Charge Density ρ ρ (even) ρ (even)
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