Chapter 4 Angular Momentum

James Huffman Mahmoud Khalaf Elewa Aymeric McRae Lexie Weghorn

December 8, 2021

Introduction	Fall 2020 Final: Problems 1-3
•0	000

Addition of Angular Momentum

Clebsch-Gordon Coefficients and Example $_{\rm OOO}$

Angular momentum operator

- Total angular momentum $\vec{J} \equiv \vec{L} + \vec{S}$
 - Orbital angular momentum \vec{L}
 - Spin angular momentum \vec{S}
- Orbital angular momentum \vec{L}

•
$$L_z = -i\hbar (x\partial_y - y\partial_x) = -i\hbar\partial_\phi$$

- $\left|\vec{L}\right|^2 = L_x^2 + L_y^2 + L_z^2$ is a scalar
- Raising and lowering operators for angular momentum L_\pm
 - $L_{\pm} \equiv L_x \pm iL_y$

Introduction	Fall 2020 Final: Problems 1-3	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Exam
0•	000	00	000

Angular momentum operator continued

- Commutation
 - L_z commutes with H if H is invariant to rotations about the z axis
 - $[L_z, L_+] = \pm \hbar L_+$
- Eigenstates
 - Can define eigenstates of a spherically symmetric H that are also eigenstates of both L^2 and L_{z} .
 - Eigenvalues defined in terms of m and l
 - $L_z |I, m\rangle = m\hbar |I, m\rangle$ $L^2 |I, m\rangle = I(I+1)\hbar^2 |I, m\rangle$

Introduction	Fall 2020 Final: Problems 1-3	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Examp
Problem			

 Consider three spin operators S_x, S_y and S_z. Circle the operators that commute with S_z.

 $\begin{array}{cccc} 1 & S_{x} \\ 2 & S_{z} \\ 3 & S_{x}^{2} \\ 4 & S_{z}^{2} \\ 5 & S_{x}^{2} + S_{y}^{2} + S_{z}^{2} \end{array}$

2 Consider two sets of spin operators, S_x , S_y , S_z and L_x , L_y , L_z . You can assume \vec{S} operates on intrinsic spin and that \vec{L} describes orbital angular momentum. Circle the operators that commute with S_z .

3 Now consider the operators $\vec{J} \equiv \vec{L} + \vec{S}$. Circle the operators that commute with S_z .

 $\begin{array}{cccc} 1 & J_{x} \\ 2 & J_{z} \\ 3 & J_{x}^{2} \\ 4 & J_{z}^{2} \\ 5 & J_{x}^{2} + J_{y}^{2} + J_{z}^{2} \end{array}$

Introduction	Fall 2020 Final: Problems 1-3 ○●○	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Example
Solution			

 Circle the operators that commute with S_z.

- Circle the operators that commute with S_z.
 - 1 L_x 2 L_z 3 L_x^2 4 L_z^2 5 $L_x^2 + L_y^2 + L_z^2$

3 Circle the operators that commute with **S**_z.

Introduction	Fall 2020 Final: Problems 1-3 ○○●	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Example
Details			

Notation

- Define "vector" of operators: $\vec{S} = S_x \hat{x} + S_y \hat{y} + S_z \hat{z}$ with $S^2 = S_x^2 + S_y^2 + S_z^2$
- Total angular momentum: $\vec{J} \equiv \vec{L} + \vec{S}$; $J_i = L_i + S_i$; $J^2 = L^2 + S^2 + 2L \cdot S \neq L^2 + S^2$

Commutator properties:

- $[\mathbf{A}, \mathbf{B}] = -[\mathbf{B}, \mathbf{A}]$
- $[\mathbf{A} + \mathbf{B}, \mathbf{C}] = [\mathbf{A}, \mathbf{C}] + [\mathbf{B}, \mathbf{C}]$
- $[\mathbf{AB}, \mathbf{C}] = \mathbf{A}[\mathbf{B}, \mathbf{C}] + [\mathbf{A}, \mathbf{C}]\mathbf{B}$

Important commutation relations (hold for L as well):

- $[\mathbf{S}_{\mathbf{i}}, \mathbf{S}_{\mathbf{j}}] = i \epsilon_{ijk} \mathbf{S}_{\mathbf{k}}$
- $[S^2, S_i] = 0$
- $[S_i, L_j] = 0; [S_i^{(1)}, S_j^{(2)}] = 0; [S_i, J_j] = [S_i, S_j]$

Introduction	Fall 2020 Final: Problems 1-3	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Example
00	000	•0	000

Addition of Angular Momentum

Suppose we have two particles with angular momenta \hat{J}_1 and \hat{J}_2 . Then, we have:

$$egin{bmatrix} \hat{J}_{nx}, \hat{J}_{ny} \end{bmatrix} = i\hbar \hat{J}_{nz}, \quad ext{etc.}, \quad \begin{bmatrix} \hat{J}_n^2, \hat{J}_{ni} \end{bmatrix} = 0 \quad , \ & ext{and} \ \begin{bmatrix} \hat{J}_{1i}, \hat{J}_{2k} \end{bmatrix} = 0, \quad i, k = x, y, z \end{split}$$

Therefore, the four operators \hat{J}_1^2 , \hat{J}_{1z} , \hat{J}_2^2 , \hat{J}_{2z} constitute a set of compatible observables. (j_1 , j_2 , m_1 , m_2) can be mutually observed... They should have a common set of eigenbasis:

$$\hat{J}_{1}^{2} |j_{1}, m_{1}, j_{2}, m_{2}\rangle = j_{1} (j_{1} + 1) \hbar^{2} |j_{1}, m_{1}, j_{2}, m_{2}\rangle \hat{J}_{1z} |j_{1}, m_{1}, j_{2}, m_{2}\rangle = m_{1} \hbar |j_{1}, m_{1}, j_{2}, m_{2}\rangle \hat{J}_{2}^{2} |j_{1}, m_{1}, j_{2}, m_{2}\rangle = j_{2} (j_{2} + 1) \hbar^{2} |j_{1}, m_{1}, j_{2}, m_{2}\rangle \hat{J}_{2z} |j_{1}, m_{1}, j_{2}, m_{2}\rangle = m_{2} \hbar |j_{1}, m_{1}, j_{2}, m_{2}\rangle$$

Huffman, Khalaf, McRae, and Weghorn

Introduction	Fall 2020 Final: Problems 1-3	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Example
00	000	0•	000

Addition Theorem

Now, consider the operator $\hat{J} = \hat{J}_1 + \hat{J}_2$. The allowed eigenvalues of this operator \hat{J} are:

 $j = j_1 + j_2, j_1 + j_2 - 1, \dots, |j_1 - j_2|.$ And the eigenvalues of the corresponding \hat{J}_z are: $m = j, j - 1, \dots, -j$ We can see that $[\hat{J}^2, \hat{J}^2_n] = 0, [\hat{J}^2, \hat{J}_{zn}] \neq 0$, and $[\hat{J}_z, \hat{J}^2_n] = 0$. Thus, the four operators $\hat{J}^2, \hat{J}_z, \hat{J}_1^2, \hat{J}_2^2$ constitute a set of compatible observables.

 (j, m, j_1, j_2) can be mutually observed... They should have a common set of eigenbasis:

$$\begin{split} \hat{J}^{2} & |j, m, j_{1}, j_{2}\rangle = j(j+1)\hbar^{2} & |j, m, j_{1}, j_{2}\rangle \\ \hat{J}_{z} & |j, m, j_{1}, j_{2}\rangle = m\hbar & |j, m, j_{1}, j_{2}\rangle \\ \hat{J}^{2}_{1} & |j, m, j_{1}, j_{2}\rangle = j_{1} & (j_{1}+1) \hbar^{2} & |j, m, j_{1}, j_{2}\rangle \\ \hat{J}^{2}_{2} & |j, m, j_{1}, j_{2}\rangle = j_{2} & (j_{2}+1) \hbar^{2} & |j, m, j_{1}, j_{2}\rangle \end{split}$$

Huffman, Khalaf, McRae, and Weghorn

Introduction	Fall 2020 Final: Problems 1-3	Addition of Angular Momentum	Clebsch-Gordon Coefficients and Example
00	000	00	000

Clebsch-Gordon Coefficients

- For a system of two spin-1/2 particles, we start in the highest *j*, *m* state of the coupled basis which describes the total angular momentum of both particles $J = J_1 + J_2$ where $J_1 = L_1 + S_1$, the orbital and spin components of angular momentum.
- There is only one possible uncoupled basis state for our initial state, so $|j,m_j\rangle = |s_1 = 1/2, s_2 = 1/2, m_1 = 1/2, m_2 = 1/2\rangle = |\uparrow\uparrow\rangle$
- To generate other coupled basis states, we act on this state with the lowering operator:

$$J_{-}\left|j,m_{j}
ight
angle=\hbar\sqrt{j\left(j+1
ight)-m_{j}\left(m_{j}-1
ight)\left|j,m_{j}-1
ight
angle}$$

• The corresponding uncoupled basis states are found by similarly acting on the initial uncoupled state by:

$$(S_{1-}+S_{2-}) |m_1,m_2
angle = S_{1-} |m_1,m_2
angle + S_{2-} |m_1,m_2
angle$$

Huffman, Khalaf, McRae, and Weghorn

Introduction

 \hbar_1

Fall 2020 Final: Problems 1-3

Addition of Angular Momentum

Clebsch-Gordon Coefficients and Example $_{\odot \bullet \odot}$

From completeness:

$$\begin{split} \mathbb{I} &= \sum_{m_1, m_2} |s_1, s_2, m_1, m_2\rangle \langle s_1, s_2, m_1, m_2| \\ j, m_j \rangle &= \sum_{m_1, m_2} |s_1, s_2, m_1, m_2\rangle \langle s_1, s_2, m_1, m_2 | j, m_j \rangle \\ &= \sum_{m_1, m_2} \underbrace{\langle j, m_j \, | \, s_1, s_2, m_1, m_2 \rangle}_{\text{Clebsch-Gordon coefficients}} |s_1, s_2, m_1, m_2 \rangle \end{split}$$

In this case, the first lowering operation always gives:

$$J_{-} |j,m_{j}\rangle = (S_{1-}+S_{2-}) |m_{1},m_{2}\rangle$$

$$\sqrt{j(j+1)-m_{j}(m_{j}-1)} |j,m_{j}-1\rangle = \hbar \sqrt{m_{1}(m_{1}+1)-m_{1}(m_{1}-1)} |m_{1}-1,m_{2}\rangle + \hbar \sqrt{m_{2}(m_{2}+1)-m_{2}(m_{2}-1)} |m_{1},m_{2}-1\rangle$$

$$|j,m_{j}-1\rangle = \frac{\sqrt{m_{1}(m_{1}+1)-m_{1}(m_{1}-1)}}{\sqrt{j(j+1)-m_{j}(m_{j}-1)}} |m_{1}-1,m_{2}\rangle + \frac{\sqrt{m_{2}(m_{2}+1)-m_{2}(m_{2}-1)}}{\sqrt{j(j+1)-m_{j}(m_{j}-1)}} |m_{1},m_{2}-1\rangle$$

Huffman, Khalaf, McRae, and Weghorn

Chapter 4

Introduction
00

Fall 2020 Final: Problems 1-3

Addition of Angular Momentum

Clebsch-Gordon Coefficients and Example $_{\odot \odot \bullet}$

Decay of a neutral ρ^0 with initial angular momentum

One decay mode for a neutral rho meson ρ^0 is to an electron and positron pair with branching ratio of $\sim 5 \times 10^{-5}$:

$$e^+ \leftarrow
ho^0
ightarrow e^-$$

Suppose the rho meson was known to be in the l = 0 state before the decay. What is the resulting state of the electron-positron system after the decay?

- Total angular momentum is conserved, we relate the initial coupled basis state $|j = 1, m_j = 0\rangle$ to our final state in the uncoupled $|s_1, s_2, m_1, m_2\rangle$ basis. The corresponding uncoupled basis state is given by the Clebsch-Gordon coefficients:
- Note that due to spin conservation, states with *I* ≠ 0 are not possible. Therefore, the angular momentum of the resulting decay is composed entirely from spin angular momentum.

Initial state is:

$$|l=0,s=1,m_l=0,m_s=0
angle=|j=1,m_j=0
angle$$

We relate this to the uncoupled e^+ , e^- basis by:

$$|j=1,m_j=0
angle=rac{1}{\sqrt{2}}\left(|\uparrow\downarrow
angle+|\downarrow\uparrow
angle
ight)$$