Chapter 4
 Angular Momentum

James Huffman Mahmoud Khalaf Elewa Aymeric McRae Lexie Weghorn

December 8, 2021

Angular momentum operator

- Total angular momentum $\vec{J} \equiv \vec{L}+\vec{S}$
- Orbital angular momentum \vec{L}
- Spin angular momentum \vec{S}
- Orbital angular momentum \vec{L}
- $L_{z}=-i \hbar\left(x \partial_{y}-y \partial_{x}\right)=-i \hbar \partial_{\phi}$
- $|\vec{L}|^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}$ is a scalar
- Raising and lowering operators for angular momentum $L_{ \pm}$
- $L_{ \pm} \equiv L_{x} \pm i L_{y}$

Angular momentum operator continued

- Commutation
- L_{z} commutes with H if H is invariant to rotations about the z axis
- $\left[L_{z}, L_{ \pm}\right]= \pm \hbar L_{ \pm}$
- Eigenstates
- Can define eigenstates of a spherically symmetric H that are also eigenstates of both L^{2} and L_{z}.
- Eigenvalues defined in terms of m and l
- $L_{z}|I, m\rangle=m \hbar|I, m\rangle$
- $L^{2}|I, m\rangle=I(I+1) \hbar^{2}|I, m\rangle$

Problem

(1) Consider three spin operators $\mathbf{S}_{\mathbf{x}}, \mathbf{S}_{\mathbf{y}}$ and $\mathbf{S}_{\mathbf{z}}$. Circle the operators that commute with $\mathbf{S}_{\mathbf{z}}$.
(1) S_{x}
(2) S_{z}
(3) S_{x}^{2}
(4) S_{z}^{2}

5 $\mathbf{S}_{\mathrm{x}}^{2}+\mathrm{S}_{\mathrm{y}}^{2}+\mathrm{S}_{\mathrm{z}}^{2}$

2 Consider two sets of spin operators, $\mathbf{S}_{\mathbf{x}}, \mathbf{S}_{\mathbf{y}}, \mathbf{S}_{\mathbf{z}}$ and L_{x}, L_{y}, L_{z}. You can assume $\overrightarrow{\mathbf{S}}$ operates on intrinsic spin and that $\overrightarrow{\mathbf{L}}$ describes orbital angular momentum. Circle the operators that commute with $\mathbf{S}_{\mathbf{z}}$.
$\begin{array}{ll}1 & L_{x} \\ 2 & L_{z} \\ 3 & L_{x}^{2} \\ 4 & L_{z}^{2} \\ 5 & L_{x}^{2}\end{array}+L_{y}^{2}+L_{z}^{2}$
(3) Now consider the operators $\overrightarrow{\mathbf{J}} \equiv \overrightarrow{\mathbf{L}}+\overrightarrow{\mathbf{S}}$. Circle the operators that commute with $\mathbf{S}_{\mathbf{z}}$.
(1) J_{x}
(2) J_{z}
(3) $\mathrm{J}_{\mathrm{x}}^{2}$
(4) J_{2}^{2}
(5) $\mathbf{J}_{\mathrm{x}}^{2}+\mathrm{J}_{\mathrm{y}}^{2}+\mathrm{J}_{\mathrm{z}}^{2}$

Solution

1 Circle the operators that commute with $\mathbf{S}_{\mathbf{z}}$.
(1) S_{x}
(2) S_{z}
(3) $\mathbf{S}_{\mathbf{x}}^{2}$
(4) S_{z}^{2}
(5) $\mathrm{S}_{\mathrm{x}}^{2}+\mathrm{S}_{\mathrm{y}}^{2}+\mathrm{S}_{\mathrm{z}}^{2}$

2 Circle the operators that commute with $\mathbf{S}_{\mathbf{z}}$.
(1) L_{x}
$2 \mathrm{~L}_{z}$
(3) L_{x}^{2}
$4 L_{z}^{2}$
(5) $\mathrm{L}_{\mathrm{x}}^{2}+\mathrm{L}_{\mathrm{y}}^{2}+\mathrm{L}_{z}^{2}$

3 Circle the operators that commute with $\mathbf{S}_{\mathbf{z}}$.
(1) J_{x}
(2) J_{z}
(3) J_{x}^{2}
(4) $\mathrm{J}_{\mathrm{z}}^{2}$
(5) $\mathbf{J}_{\mathrm{x}}^{2}+\mathbf{J}_{\mathrm{y}}^{2}+\mathrm{J}_{\mathrm{z}}^{2}$

Details
Notation

- Define "vector" of operators: $\overrightarrow{\mathbf{S}}=\mathbf{S}_{\mathbf{x}} \hat{x}+\mathbf{S}_{\mathbf{y}} \hat{y}+\mathbf{S}_{\mathbf{z}} \hat{z}$ with $\mathbf{S}^{\mathbf{2}}=\mathbf{S}_{\mathbf{x}}^{2}+\mathbf{S}_{\mathbf{y}}^{\mathbf{y}}+\mathbf{S}_{\mathbf{z}}^{2}$
- Total angular momentum: $\overrightarrow{\mathbf{J}} \equiv \overrightarrow{\mathbf{L}}+\overrightarrow{\mathbf{S}} ; \mathbf{J}_{\mathbf{i}}=\mathbf{L}_{\mathbf{i}}+\mathbf{S}_{\mathbf{i}} ; \mathbf{J}^{2}=\mathbf{L}^{2}+\mathbf{S}^{2}+\mathbf{2 L} \cdot \mathbf{S} \neq \mathbf{L}^{2}+\mathbf{S}^{2}$ Commutator properties:
- $[\mathbf{A}, \mathbf{B}]=-[\mathbf{B}, \mathbf{A}]$
- $[\mathbf{A}+\mathbf{B}, \mathbf{C}]=[\mathbf{A}, \mathbf{C}]+[\mathbf{B}, \mathbf{C}]$
- $[\mathbf{A B}, \mathbf{C}]=\mathbf{A}[\mathbf{B}, \mathbf{C}]+[\mathbf{A}, \mathbf{C}] \mathbf{B}$

Important commutation relations (hold for \mathbf{L} as well):

- $\left[\mathbf{S}_{\mathbf{i}}, \mathbf{S}_{\mathbf{j}}\right]=i \epsilon_{j j k} \mathbf{S}_{\mathbf{k}}$
- $\left[\mathbf{S}^{2}, \mathbf{S}_{\mathbf{i}}\right]=0$
- $\left[\mathbf{S}_{\mathbf{i}}, \mathbf{L}_{\mathbf{j}}\right]=0 ;\left[\mathbf{S}_{\mathbf{i}}^{(1)}, \mathbf{S}_{\mathbf{j}}^{(2)}\right]=0 ;\left[\mathbf{S}_{\mathbf{i}}, \mathbf{J}_{\mathbf{j}}\right]=\left[\mathbf{S}_{\mathbf{i}}, \mathbf{S}_{\mathbf{j}}\right]$

Addition of Angular Momentum

Suppose we have two particles with angular momenta \hat{J}_{1} and $\hat{\jmath}_{2}$. Then, we have:

$$
\begin{gathered}
{\left[\hat{\jmath}_{n x}, \hat{\jmath}_{n y}\right]=i \hbar \hat{\jmath}_{n z}, \quad \text { etc., } \quad\left[\hat{\jmath}_{n}^{2}, \hat{\jmath}_{n i}\right]=0} \\
{\left[\hat{\jmath}_{1 i}, \hat{\jmath}_{2 k}\right]=0, \quad \text { and }}
\end{gathered}
$$

Therefore, the four operators $\hat{J}_{1}^{2}, \hat{J}_{1 z}, \hat{\jmath}_{2}^{2}, \hat{J}_{2 z}$ constitute a set of compatible observables. ($j_{1}, j_{2}, m_{1}, m_{2}$) can be mutually observed... They should have a common set of eigenbasis:

$$
\begin{aligned}
\hat{\jmath}_{1}^{2}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle & =j_{1}\left(j_{1}+1\right) \hbar^{2}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle \\
\hat{\jmath}_{1 z}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle & =m_{1} \hbar\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle \\
\hat{\jmath}_{2}^{2}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle & =j_{2}\left(j_{2}+1\right) \hbar^{2}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle \\
\hat{\jmath}_{2 z}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle & =m_{2} \hbar\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle
\end{aligned}
$$

Addition Theorem

Now, consider the operator $\hat{\jmath}=\hat{\jmath}_{1}+\hat{\jmath}_{2}$.
The allowed eigenvalues of this operator $\hat{\jmath}$ are:

$$
j=j_{1}+j_{2}, j_{1}+j_{2}-1, \ldots,\left|j_{1}-j_{2}\right|
$$

And the eigenvalues of the corresponding \hat{J}_{z} are: $m=j, j-1, \ldots,-j$ We can see that $\left[\hat{\jmath}^{2}, \hat{\jmath}_{n}\right]=0,\left[\hat{\jmath}^{2}, \hat{\jmath}_{z n}\right] \neq 0$, and $\left[\hat{\jmath}_{z}, \hat{\jmath}_{n}\right]=0$. Thus, the four operators $\hat{\jmath}^{2}, \hat{J}_{z}, \hat{J}_{1}^{2}, \hat{J}_{2}^{2}$ constitute a set of compatible observables. (j, m, j_{1}, j_{2}) can be mutually observed... They should have a common set of eigenbasis:

$$
\begin{aligned}
& \hat{\jmath}^{2}\left|j, m, j_{1}, j_{2}\right\rangle=j(j+1) \hbar^{2}\left|j, m, j_{1}, j_{2}\right\rangle \\
& \hat{J}_{z}\left|j, m, j_{1}, j_{2}\right\rangle=m \hbar\left|j, m, j_{1}, j_{2}\right\rangle \\
& \hat{J}_{1}^{2}\left|j, m, j_{1}, j_{2}\right\rangle=j_{1}\left(j_{1}+1\right) \hbar^{2}\left|j, m, j_{1}, j_{2}\right\rangle \\
& \hat{J}_{2}^{2}\left|j, m, j_{1}, j_{2}\right\rangle=j_{2}\left(j_{2}+1\right) \hbar^{2}\left|j, m, j_{1}, j_{2}\right\rangle
\end{aligned}
$$

Clebsch-Gordon Coefficients

- For a system of two spin-1/2 particles, we start in the highest j, m state of the coupled basis which describes the total angular momentum of both particles $J=J_{1}+J_{2}$ where $J_{1}=L_{1}+S_{1}$, the orbital and spin components of angular momentum.
- There is only one possible uncoupled basis state for our initial state, so

$$
\left|j, m_{j}\right\rangle=\left|s_{1}=1 / 2, s_{2}=1 / 2, m_{1}=1 / 2, m_{2}=1 / 2\right\rangle=|\uparrow \uparrow\rangle
$$

- To generate other coupled basis states, we act on this state with the lowering operator:

$$
J_{-}\left|j, m_{j}\right\rangle=\hbar \sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}\left|j, m_{j}-1\right\rangle
$$

- The corresponding uncoupled basis states are found by similarly acting on the initial uncoupled state by:

$$
\left(S_{1-}+S_{2-}\right)\left|m_{1}, m_{2}\right\rangle=S_{1-}\left|m_{1}, m_{2}\right\rangle+S_{2-}\left|m_{1}, m_{2}\right\rangle
$$

From completeness:

$$
\begin{aligned}
\mathbb{I} & =\sum_{m_{1}, m_{2}}\left|s_{1}, s_{2}, m_{1}, m_{2}\right\rangle\left\langle s_{1}, s_{2}, m_{1}, m_{2}\right| \\
\left|j, m_{j}\right\rangle & =\sum_{m_{1}, m_{2}}\left|s_{1}, s_{2}, m_{1}, m_{2}\right\rangle\left\langle s_{1}, s_{2}, m_{1}, m_{2} \mid j, m_{j}\right\rangle \\
& =\sum_{m_{1}, m_{2}} \underbrace{\left\langle j, m_{j} \mid s_{1}, s_{2}, m_{1}, m_{2}\right\rangle}_{\text {Clebsch-Gordon coefficients }}\left|s_{1}, s_{2}, m_{1}, m_{2}\right\rangle
\end{aligned}
$$

In this case, the first lowering operation always gives:

$$
\begin{gathered}
J_{-}\left|j, m_{j}\right\rangle=\left(S_{1-}+S_{2-}\right)\left|m_{1}, m_{2}\right\rangle \\
\hbar \sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}\left|j, m_{j}-1\right\rangle=\hbar \sqrt{m_{1}\left(m_{1}+1\right)-m_{1}\left(m_{1}-1\right)}\left|m_{1}-1, m_{2}\right\rangle+\hbar \sqrt{m_{2}\left(m_{2}+1\right)-m_{2}\left(m_{2}-1\right)}\left|m_{1}, m_{2}-1\right\rangle \\
\left|j, m_{j}-1\right\rangle=\frac{\sqrt{m_{1}\left(m_{1}+1\right)-m_{1}\left(m_{1}-1\right)}}{\sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}}\left|m_{1}-1, m_{2}\right\rangle+\frac{\sqrt{m_{2}\left(m_{2}+1\right)-m_{2}\left(m_{2}-1\right)}}{\sqrt{j(j+1)-m_{j}\left(m_{j}-1\right)}}\left|m_{1}, m_{2}-1\right\rangle
\end{gathered}
$$

Decay of a neutral ρ^{0} with initial angular momentum

One decay mode for a neutral rho meson ρ^{0} is to an electron and positron pair with branching ratio of $\sim 5 \times 10^{-5}$:

$$
e^{+} \leftarrow \rho^{0} \rightarrow e^{-}
$$

Suppose the rho meson was known to be in the $I=0$ state before the decay. What is the resulting state of the electron-positron system after the decay?

- Total angular momentum is conserved, we relate the initial coupled basis state $\left|j=1, m_{j}=0\right\rangle$ to our final state in the uncoupled $\left|s_{1}, s_{2}, m_{1}, m_{2}\right\rangle$ basis. The corresponding uncoupled basis state is given by the Clebsch-Gordon coefficients:
- Note that due to spin conservation, states with $I \neq 0$ are not possible. Therefore, the angular momentum of the resulting decay is composed entirely from spin angular momentum.

