
Chapter 3: Charged Particles in Electromagnetic Fields
(Dated: December 2021)

I. INTRODUCTION

Chapter 3 considers the effects of added electric and magnetic fields on the motion of a free
particle. Certain example systems closely parallel the resulting dynamics found from a classical
approach. Specifically, the Heisenberg representation allows us to derive and solve the equation
of motion for the position operator, r⃗, identifying the conjugate momentum. We briefly review
a number of important concepts for the quantum mechanical description, as well as from clas-
sical mechanics and electromagnetism. Two notable effects, the existence of Landau levels and
generation of a drift velocity, are covered as a previous exam problem.

II. RELEVANT CONCEPTS FROM THE CHAPTER

A. Electric and Magnetic Fields, Potential Four Vector

We consider the effects of added electric and magnetic fields on the motion of a free particle of
charge e, mass m. The electric and magnetic field are described in terms of the scalar and vector
potential:

E⃗ = −∇Φ− 1

c

∂A⃗

∂t
, (1)

B⃗ = ∇× A⃗. (2)

Here, the vector potential, A⃗, and scalar potential, Φ form the relativistic potential four-vector:
(Φ, Ax, Ay, Az)

T . To refresh, in a new frame moving with velocity vo along the y-dimension, the
potential four vector is observed as:
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Here, β = vo/c, and γ = 1/
√

1− β2. Recall that physical laws are invariant when viewed from
different inertial frames.

There is an apparent freedom in the choice of E⃗ and B⃗ as presented above. Rewriting as,

E⃗ = −∇
(
Φ− 1

c

∂Λ(r⃗, t)

∂t

)
− 1

c

∂

∂t
(A⃗+∇Λ(r⃗, t)), (4)

B⃗ = ∇× (A⃗+∇Λ(r⃗, t)), (5)

the fields remain unchanged by the additional components. This is known as a gauge transforma-
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tion, allowing us to rewrite A⃗ and Φ in an equivalent form, usually with some symmetry exploited
in problem solving.

B. Mini-Example: Fall 2020 Midterm 2, Problem 1, Part (a)

“A particle of mass m and charge e feels a strong constant electric field E⃗ = Eox̂. Additionally,
the particle experiences a constant weak magnetic field B⃗ = Boẑ. The magnetic field strength is
less than the electric field strength, Eo > Bo.”

(a) Describe a frame where either E⃗ or B⃗ are zero, and describe the subsequent, observed motion.

As Eo > Bo, we can find a frame where the magnetic field strength is zero. Assuming A⃗ lies
along the y axis, we see Eo = −∂(−Eox)/∂x, and Bo = ∂(Box)/∂x. Our vector potential is
then, (−Eox, 0, Box, 0)

T . Considering a frame moving along the y dimension at vo:

Φ′ = γ

(
− Eox− vo

c
Box

)
(6)

A′
x = Ax (7)

A′
y = γ

(
vo
c
Eox+Box

)
(8)

A′
z = Az (9)

Setting B⃗′ = ∇× A⃗′ = 0 yields the speed vo = −Boc/Eo. Note that this solution would be
nonphysical if Bo > Eo. Solving for E⃗′:

E⃗′ = −∇Φ = −γ∇
(
− Eox+

B2
o

Eo
x

)
= γ

(
Eo −

B2
o

Eo

)
x̂ (10)

In the frame moving with vo, a particle appears to accelerate in the x direction. This motion
is due to E⃗′, as B⃗′ = 0′.

C. Introducing Electromagnetism in Quantum Mechanics

We are interested in incorporating the potential four vector into the Hamiltonian. A complete
derivation will require quantum electrodynamics. As in classical mechanics, we will just assume
the form:

H =
1

2m

(
P⃗ − eA⃗

c

)2

+ eΦ(r⃗, t). (11)

The above equation can also be obtained through a ‘minimal coupling’ as described in the lecture
notes, noting the symmetry between the spatial partial derivatives with A⃗, and the partial time
derivative with Φ.

The results from this chapter rely on the equations of motion describing a particle’s trajectory.
The Heisenberg representation is then a natural choice to describe our time varying operators. For
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an operator A(H) in the Heisenberg representation, we have:

dA(H)

dt
=
∂U †

∂t
A(S)U + U †A(S)∂U

∂t
(12)

=
i

ℏ

(
U †HUU †A(S)U − U †A(S)UU †HU

)
(13)

=
i

ℏ
[U †HU,A(H)] (14)

=
i

ℏ
[H,A(H)] =

i

ℏ
eiHt/ℏ[H,A(S)]e−iHt/ℏ. (15)

Here, A(S) is the operator in the Schrodinger representation, and U is the evolution operator.
We’ve assumed U commutes with H, and that A has no explicit time dependence. The identity
was inserted in the second line. The equation of motion for the position operator is then (dropping
the superscript):

dri
dt

=
i

ℏ
eiHt/ℏ[H, ri]e

−iHt/ℏ (16)

=
1

2miℏ
∑
j

(
ri

(
Pj −

eAj

c

)(
Pj −

eAj

c

)
−
(
Pj −

eAj

c

)(
Pj −

eAj

c

)
ri

)
. (17)

The evolution operators have been dropped in the second line, implying the right hand side is to
be taken in the Heisenberg representation. The coordinate ri will commute with functions of pj or
rj such that, j ̸= i:

dri
dt

=
1

2miℏ

(
ri

(
Pi −

eAi

c

)(
Pi −

eAi

c

)
+ iℏ

(
Pi −

eAi

c

)
−
(
Pi −

eAi

c

)
ri

(
Pi −

eAi

c

))
, (18)

dri
dt

=
(Pi − eAi/c)

m
=

Πi

m
. (19)

Finally, the conjugate momentum, Π⃗ is derived. The quantity is directly proportional to the
velocity of the particle (not the operator Pi). If not obvious, the above commutator can be derived
using a test function.

III. A LONGER EXAMPLE: FALL FINAL 2019, PROBLEM 7

“A positively charged particle of mass m and charge e is placed in a region with uniform magnetic
field B pointing along the z axis.”

(a) “Write the vector potential that describes the field such that A⃗ is in the y direction.”

Following the previous example, take the four vector potential, (0, 0, Box, 0)
T .

(b) “What is the ground state energy? What is the general form for all eigen energies?”

Begin by expressing H in terms of the chosen gauge:
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H =
P 2
z

2m
+
P 2
x

2m
+

1

2m

(
Py −

eBx

c

)2

. (20)

Here, Pi is the momentum operator for the ith dimension. H is a function of only the spatial
coordinate x, suggesting,

[Py, H] = [Pz, H] = 0. (21)

The operators Py and Pz represent constants of motion (remember the equation of motion
for operators in the Heisenberg representation), and can be replaced by their eigenvalues,
ℏky and ℏkz. Our spatial wave function can then be taken as:

ψ(x, y, z) = ϕ(z)ϕ(y)ϕ(x) = eikzzeikyyϕ(x), (22)

Where ϕ(z) and ϕ(y) are momentum eigenstates. ϕ(z) is a simultaneous eigenstate of H,
corresponding to the energy of a free particle moving unaffected in the ẑ direction:

Hϕ(z) = Ezϕ(z) =
P 2
z

2m
ϕ(z) −→ ℏ2k2z

2m
= Ez. (23)

Separately, we now focus on the coupled motion in the x-y plane. As H has no explicit time
dependence (Hψ = Eψ):

Eψ(x, y, z)− Ezψ = − ℏ2

2m
∂2xψ +

1

2m

(
ℏky −

eBx

c

)2

ψ, (24)

Eϕ(x)− Ezϕ(x) = − ℏ2

2m
∂2xϕ(x) +

1

2m

(
ℏky −

eBx

c

)
·

(
ℏky −

eBx

c

)
ϕ(x). (25)

Simply pulling out the factors scaling x,

Eϕ(x)− Ezϕ(x) = − ℏ2

2m
∂2xϕ(x) +

e2B2

2mc2

(
ℏkyc
eB

− x

)2

ϕ(x), (26)

This form is identified as the Hamiltonian of a 1D harmonic oscillator (HO), centered on
xo. The angular frequency is ω = eB/mc, the cyclotron frequency. The center position,
xo = ℏkyc/eB. Though the motion occurs in the two dimensional x-y plane, the x and y
coordinates are coupled, representing motion confined to a circle. We can consider the speed
in the y-dimension:

vy =
Πy

m
=

(
ℏky −

eBx

c

)
1

m
. (27)

To describe the HO motion suggested by the Hamiltonian, we choose a solution, x = x0 +
R cos(wt). R is the radius of the circular path, set by initial conditions. Substituting into
the above yields, vy = −ωR cos(ωt). Differentiating or integrating these respective equations



5

gives a complete description of circular motion in the x-y plane. This constraint generates
degeneracy between states, and allows us to represent the energy eigenvalues of the system
in terms of the 1D HO solution:

En(kz) =
ℏ2k2z
2m

+

(
n+

1

2

)
ℏω, (28)

E0(kz) =
ℏ2k2z
2m

+
ℏω
2

(29)

There is no dependence of energy on ky, reflecting the degeneracy described. An unconfined
particle can take any value of ky for the same n. This group of solutions corresponds to the
nth Landau level. Also note, if hω is large with respect to the kinetic energy contributed by
translational motion in the z-direction, the quantization becomes more prominent.

(c) “An electric field E (|E| < |B|) is added in the x direction. If the particle is initially at
x = y = 0 at time t = 0 and if the initial velocity v⃗(t = 0) = 0, find its approximate position
after a long time t. By “approximate”, ignore any oscillatory forms to its position vs time.”

We assume the same form for ψ as part (b). The Hamiltonian now reflects the added scalar
potential:

H =
ℏ2k2y
2m

+
P 2
x

2m
+

1

2m

(
ℏky −

eBx

c

)2

− eEx. (30)

Expanding the squared term and completing the square:

H =
ℏ2k2y
2m

+
P 2
x

2m
+
e2B2

2mc2

(
x− xo

)2

− mc2E2

2B2
− ℏkyE

B
, (31)

xo =
ℏcy
eB

+
mc2E

eB2
. (32)

A particle would undergo circular motion about this shifted central position. Additionally,

Πy

m
= vy =

ℏky
m

− eBx

mc
(33)

vy =
ℏky
m

− eBxo
mc

(34)

=
ℏky
m

− ℏky
m

− Ec

B
(35)

Ignoring oscillatory effects, the particle’s position at a time t is, y(t) = −Ect/B. The x
component of velocity averages to zero, all components of velocity average to constants, and
there is no extended, translational acceleration. The result rotates with E⃗ in the x-y plane,
suggesting E⃗ rotated by some angle adjusts the orientation of the drift velocity accordingly.
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