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1 Background

1.1 Fermi’s Golden Rule

Fermi’s Golden Rule is a powerful method to calculate transition rates from
one energy eigenstate of a Hamiltonian to another energy eigenstate induced by
a perturbation. To do so, the perturbation is considered to be ”small”/”weak”
applied ”slowly” so that first-order time dependent perturbation theory applies.
Under these conditions, it can be shown that the transition rate is independent
of time and is given by

Γi→f =
2π

ℏ
|Vfi|2 δ(Ef − Ei) (1)

When this expression is used, there should be a (near)-continuum of final
states, which allows one to integrate over final states using the density of states
to obtain

Γi→f =
2π

ℏ
|Vfi|2 ρ(Ef ) (2)

In the case that time-dependence must be considered for a perturbative po-
tential (such as a harmonic oscillator) then the energy states will differ by the
energy intervals for the given perturbative time-dependent potential. Continu-
ing with the case of the harmonic perturbative potential, we know that energy
states of the harmonic perturbative potential are separated by ℏω and the energy
states described.

2 Problem: Fall 2019 Final Question 4

In one dimension, a particle of type a and mass m is in the ground state of
an attractive potential

Vo = −βδ(x)

A perturbative potential Vab is added,
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Vab = α cos (ωt)

where α is small and ℏω is larger than the binding energy. This converts the
particle to a type b particle, which has the same mass m but does not feel the
effects of Vo.

1. What is the binding energy of the a particle?

2. What is the decay rate?

2.1 Solution

2.1.1 Part 1

Given the presence of a potential in the form of a delta function, we know
that the solutions to Schrödinger’s Equation will have the form of

ψ(x) =

{
eqx if x < 0

e−qx if x > 0

In order to solve for the binding energy B, we must taking into account the
boundary conditions.

− ℏ2

2m

(
∂

∂x
ψ+(0)−

∂

∂x
ψ−(0)

)
= −βψ(0)

− ℏ2

2m
(−q − q) = − (−β)

ℏ2q
m

= β

q =
mβ

ℏ2

The binding energy B is thus

B =
ℏ2

2m
q2

=
ℏ2

2m

m2β2

ℏ4

=
mβ2

2ℏ2

2.2 Part 2

We know that Fermi’s Golden Rule is given by

Γi→f =
∑
k

2π

ℏ
|Vfi|2 δ (Ef − Ei)
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The two (normalized) states that we use to solve for the matrix element Vba are
the state for particle type a, ψa(x) =

√
q
2e

−|q|x and the state for a free particle

(since it does not feel the effects of Vo) type b, ψb(x) =
eikx
√
L

|Vba| = ⟨ψb|Vab|ϕa⟩

=

∫ ∞

−∞

(
e−ikx

√
L

)
(α)

(√
q

2
e−|q|x

)
dx

=
α
√
q

√
2L

∫ ∞

−∞
e−ikxe−|q|x dx

=
α
√
q

√
2L

(∫ 0

−∞
e−ikxeqx dx+

∫ ∞

0

e−ikxe−qx dx

)
=

√
qα

√
2L

∣∣∣∣ 1

q − ik
+

1

q + ik

∣∣∣∣
=

√
qα

√
2L

∣∣∣∣ 2q

q2 + k2

∣∣∣∣
|Vba|2 =

qα2

2L

(
2q

q2 + k2

)2

=
2q3α2

L (q2 + k2)
2

The decay rate Γa→b is now given by

Γa→b =
π

2ℏ

∫ ∞

−∞

L

2π
|Vba|2 δ (Ek − (ℏω −B)) dk

=
π

2ℏ

∫ ∞

−∞

L

2π

(
2q3α2

L (q2 + k2)
2

)
δ (Ek − (ℏω −B))

dE

dE/dk

=
q3α2

2ℏ

∫ ∞

−∞

(
1

(q2 + k2)
2

)
δ (Ek − (ℏω −B))

m

ℏ2k
dE

=
2mq3α2

ℏ3k(q2 + k2)2
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If we check our units we get

2mq3α2

ℏ3k(q2 + k2)2
=

M · (1/L)3 · E2

(E · T )3 · (1/L) · ((1/L)2 + (1/L)2)2

=
M · (1/L)3 · E2

(E · T )3 · (1/L)5

=
M

E · T 3 · (1/L)2

=
ML2

E · T 3

=
E

E · T

=
1

T
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