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1 Background

1.1 Fermi’s Golden Rule

Fermi’s Golden Rule is a powerful method to calculate transition rates from
one energy eigenstate of a Hamiltonian to another energy eigenstate induced by
a perturbation. To do so, the perturbation is considered to be ”small” /” weak”
applied ”slowly” so that first-order time dependent perturbation theory applies.
Under these conditions, it can be shown that the transition rate is independent
of time and is given by

2m
Ling = 5 Vil* 0(Ey — E;) (1)

When this expression is used, there should be a (near)-continuum of final
states, which allows one to integrate over final states using the density of states
to obtain

27
Ping =+ Vyil? p(Ey) (2)

In the case that time-dependence must be considered for a perturbative po-
tential (such as a harmonic oscillator) then the energy states will differ by the
energy intervals for the given perturbative time-dependent potential. Continu-
ing with the case of the harmonic perturbative potential, we know that energy
states of the harmonic perturbative potential are separated by Aw and the energy
states described.

2 Problem: Fall 2019 Final Question 4

In one dimension, a particle of type a and mass m is in the ground state of
an attractive potential

Vo = —pd(x)
A perturbative potential V,;, is added,



Vab = acos (wt)

where « is small and fw is larger than the binding energy. This converts the
particle to a type b particle, which has the same mass m but does not feel the
effects of V.

1. What is the binding energy of the a particle?

2. What is the decay rate?

2.1 Solution
2.1.1 Part1l

Given the presence of a potential in the form of a delta function, we know
that the solutions to Schrédinger’s Equation will have the form of

ed® ifz <0
V() = {e‘q“ ifx>0

In order to solve for the binding energy B, we must taking into account the
boundary conditions.

_th <6i¢+(o) - iw(o)) = —p(0)

—2% (—=¢—q)=—(-P)

The binding energy B is thus

2.2 Part 2
We know that Fermi’s Golden Rule is given by

2w
IFESY - Vil* 6 (Ey — )
k



The two (normalized) states that we use to solve for the matrix element V4, are
the state for particle type a, 1,(x) = \/ge"’”x and the state for a free particle

(since it does not feel the effects of V) type b, ¢p(z) = "\L/kg
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The decay rate I'y_,p is now given by
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If we check our units we get
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