Problem 1

Consider the one dimensional potential,

$$V(x) = \begin{cases} \infty & x < 0 \\ -V_o & 0 < x < a \\ 0 & x > a \end{cases}$$

- 1. For a fixed a find V_o for n bound states
- 2. At t = 0, the potential instantly disappears.For a particle originally in the ground state of the potential, what is the differential probability, dN/dp, for observing the particle with momentum p?

<u>Part 1 :</u>

There is one main assumption when solving for the bound states, that E = 0. This comes from the idea that this particle is not quite bound, E < 0, and not free either, E > 0. So we can start by writing the most general wave function.

$$\psi(x) = \begin{cases} 0 & x < 0\\ \sin(kx) & 0 < x < a\\ Ae^{-qx} & x > a \end{cases}$$

So, it can be seen from our assumption, that $q = \frac{2mE}{\hbar^2} = 0$, and so $\psi(x > a) = A$. Then, Using the Schroedinger equation, we can find an expression for V_o .

$$E = -V_o + \frac{\hbar^2 k^2}{2m} \Rightarrow V_o = \frac{\hbar^2 k^2}{2m}$$

Now, using the fact that $\psi(x > a)$ is a constant, we can say that,

$$\left. \frac{d}{dx} \sin(kx) \right|_a = k\cos(ka) = 0$$

And so, for n bound states, ka is equal to odd integer multiples of $\frac{\pi}{2}$

$$ka = (2n-1)\frac{\pi}{2}$$
 For $m = 1, 2, 3...$

Finally, plugging that into Eq. , we have the depth of the potential well for a given number of bound states.

$$V_o = \frac{\hbar^2 \pi^2}{8ma^2} (2n - 1)$$

<u>Part 2 :</u>

In general, the differential probability is given by the following,

$$\frac{dN}{dp} = \frac{1}{2\pi\hbar} \left| \right|^2 = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dx < x |\psi > = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dx e^{\frac{ipx}{\hbar}} \psi(x)$$

Then, using our equation for $\psi(x)$, we have the following.

$$\frac{dN}{dp} = \frac{1}{2\pi\hbar} \left(\int_0^a dx e^{\frac{ipx}{\hbar}} \sin(kx) + A \int_a^\infty dx e^{\frac{ipx}{\hbar}} e^{-qx} \right)$$

Note, we are ignoring the normalization constant, as its solution is trivial to find and would not contribute meaningfully to this solution. Which then can be simplified to,

$$\frac{dN}{dp} = \frac{1}{2\pi\hbar} \left(2i \int_0^a dx e^{\frac{ipx}{\hbar}} e^{ikx} - 2i \int_0^a dx e^{\frac{ipx}{\hbar}} e^{-ikx} + A \int_a^\infty dx e^{\frac{ipx}{\hbar}} e^{-qx} \right)$$

This then becomes very easy to integrate.

$$\frac{dN}{dp} = \frac{1}{\pi} \left(\frac{-1 + e^{ai(p/\hbar - p)}}{\hbar k - p} \frac{-1 + e^{ai(p/\hbar + p)}}{\hbar k + p} \right) + \frac{A}{2\pi} \left(\frac{-e^{a(q - ip/\hbar)}}{\hbar q - ip} \right)$$

Problem 2

Consider a particle, mass m, under the influence of a potential

$$V(x) = V_0 \Theta(-x) - \frac{\hbar^2}{2m} \beta \delta(x-a), \quad V_0 \to \infty, \ \beta > 0.$$

- 1. Find a trancendental equation for the energy of a bound state.
- 2. Consider now a plane wave incident on the potential from $x = \infty$ in the $-\hat{x}$ direction which is reflected off the potential. For x > a, the waveform is $e^{-ikx} e^{2i\delta}e^{ikx}$. Find the phase shift of the reflected wave.

<u>Part 1 :</u>

First, determine the general form of the wavefunctions. Most generally,

$$\psi_I(x) = Ae^{qx} + Be^{-qx}$$
 and $\psi_{II}(x) = e^{-qx}$

Under the condition that $V_0 \to \infty$, the boundary condition $\psi_I(0) = 0$ must be met, thus A + B = 0. Applying this, we get that

$$\psi_I(x) = Ae^{qx} - Ae^{-qx} = C\sinh(qx)$$

for a new constant C = 2A.

Applying the boundary conditions:

1.
$$\psi_I(x)|_{x=a} = \psi_{II}(x)|_{x=a}$$
, thus: $C \sinh(qa) = e^{-qa}$.
2. $\frac{\partial}{\partial x} \psi_{II}(x)|_{x=a} - \frac{\partial}{\partial x} \psi_I(x)|_{x=a} = \beta \psi(x)$, thus: $-qe^{-qa} - qC \cosh(qa) = \beta e^{-qa}$.

Simplifying the second BC, we get $C \cosh(qa) = \left(\frac{-\beta}{q} - 1\right)e^{-qa} = \frac{-\beta-q}{q}e^{-qa}$. Then dividing the first BC by the second, we get:

$$\tanh(qa) = -\frac{q}{\beta + q}.$$

Recalling that $q = \sqrt{2mE/\hbar^2}$, we have found a transcendental equation for the energy of a bound state.

<u>Part 2 :</u>

First, we need to reconsider the wavefunctions. Most generally,

$$\psi_I(x) = A\sin(kx) + B\cos(kx)$$
 and $\psi_{II}(x) = e^{-ikx} - e^{2i\delta}e^{ikx} = \sin(kx+\delta).$

Again, under the condition that $V_0 \to \infty$, the boundary condition $\psi_I(0) = 0$ must be met, thus $A\sin(0) + B\cos(0) = 0$, so B = 0. Then we can simplify the waveform:

$$\psi_{II}(x) = A\sin(kx).$$

Applying the boundary conditions:

1.
$$\psi_I(x)|_{x=a} = \psi_{II}(x)|_{x=a}$$
, thus: $A\sin(ka) = \sin(ka + \delta)$.
2. $\frac{\partial}{\partial x}\psi_{II}(x)|_{x=a} - \frac{\partial}{\partial x}\psi_I(x)|_{x=a} = \beta\psi(x)$, thus: $k\cos(ka - \delta) - kA\cos(ka) = \beta\sin(ka - \delta)$.

Simplifying the second BC, we get $A\cos(ka) = \cos(ka - \delta) - \frac{\beta}{k}\sin(ka - \delta)$. Then dividing the second BC by the first, we get:

$$\cot(ka) = \cot(ka - \delta) - \frac{\beta}{k},$$

and solving for the phase shift yields:

$$\delta = \cot^{-1}\left(\cot(ka) + \frac{\beta}{k}\right) - ka.$$

Problem 3

Here we will examine two problems dealing with a simple harmonic oscillator.

- 1. Calculate $\langle m | (a^{\dagger}a)^{K} a^{\dagger} (aa^{\dagger})^{M} | n \rangle$ where m = 1 and n = 0.
- 2. In the case of the three dimensional case of a harmonic osciallator, given the quantum numbers n_x , n_y , and n_z , and that $N = n_x + n_y + n_z$, find the degeneracy in eigenstates up to N = 2.

<u>Part 1 :</u>

Here, we make use of the fact that the raising and lowering operators, respectively, act on eigenstates of the harmonic oscillator in the following way: $a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$ and $a |n+1\rangle = \sqrt{n+1} |n\rangle$.

Next, we can start with the $(aa^{\dagger})^{M}$ operator. Ignoring the power of M, we can see that the raising operator raises the state with a coefficient of $\sqrt{n+1}$ and the lowering operator returns to the $|n\rangle$ state with a coefficient of (n+1). Acting M times, we can simplify the expression to $(n+1)^{M} \langle m | (a^{\dagger}a)^{K} a^{\dagger} | n \rangle$. Then we apply the raising operator again to get $\sqrt{n+1}(n+1)^{M} \langle m | (a^{\dagger}a)^{K} | n+1 \rangle$. Now we must apply the $(a^{\dagger}a)^{K}$ operator (also known as the number operator). We can apply this to the $|n+1\rangle$ state to get the form $(n+1)^{K+M} \sqrt{n+1} \langle m | n+1 \rangle$.

Finally, given the states m = 1 and n = 0, our expression simplifies to $1^{K+M} \langle 1|1 \rangle = 1$.

<u>Part 2 :</u>

In the one dimensional case, we know the energy to scale as $E_n = \hbar\omega(n+\frac{1}{2})$. In the three dimensional case, each dimension contributes its own similar term to the energy. Thus the energy becomes $E_N = \hbar\omega(n_x + \frac{1}{2}) + \hbar\omega(n_y + \frac{1}{2}) + \hbar\omega(n_z + \frac{1}{2}) = \hbar\omega(n_x + n_y + n_z + \frac{3}{2})$. If we substitute the given relation, we get $E_N = \hbar\omega(N+\frac{3}{2})$. Now, we must find the number of states that correspond to each of the first 3 energy levels.

In the ground state case, N = 0, there is obviously only one state where each quantum number is 0; so there is no degeneracy.

For N = 1, we need all the possible positive integers of n_x , n_y , and n_z that add to one. Since the numbers cannot be negative, we have three solutions:

$$n_x = 1, n_y = 0, n_z = 0$$

 $n_x = 0, n_y = 1, n_z = 0$
 $n_x = 0, n_y = 0, n_z = 1$

And thus, we have a degeneracy of three.

Finally in the N = 2 case, we again need to find each combination of integers that will result in $n_x + n_y + n_z = 2$. We can start by listing all the states with one dimension in the second excited state:

 $n_x = 2, n_y = 0, n_z = 0$ $n_x = 0, n_y = 2, n_z = 0$ $n_x = 0, n_y = 0, n_z = 2$

Additionally, we must include both combinations of $n_x = 1$:

$$n_x = 1, n_y = 1, n_z = 0$$

 $n_x = 1, n_y = 0, n_z = 1$

, and the remaining state in which $n_y = n_z = 1$:

$$n_x = 0, n_y = 1, n_z = 1$$

. All six of these states correspond to the same energy, meaning the degeneracy is 6 for n+2.