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Problem 1

Consider the one dimensional potential,

00 z <0
Vie)=¢ -V, 0<z<a
0 r>a

1. For a fixed a find V, for n bound states

2. At t = 0, the potential instantly disappears.For a particle originally in the ground
state of the potential, what is the differential probability, dN/dp, for observing the
particle with momentum p?

Part 1:

There is one main assumption when solving for the bound states, that £ = 0. This comes
from the idea that this particle is not quite bound, E < 0, and not free either, £ > 0. So we
can start by writing the most general wave function.

0 x<0
P(z) =1 sin(kr) 0<z<a
Ae™®™  x>a

So, it can be seen from our assumption, that ¢ = QZEE = 0, and so (z > a) = A. Then,

Using the Schroedinger equation, we can find an expression for V.

LR .5

E=-V,
* 2m 2m

Now, using the fact that ¢(x > a) is a constant, we can say that,

d
%sm(kx) = kcos(ka) =0

a
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And so, for n bound states, ka is equal to odd integer multiples of 7

ka = (2n — 1)% For m=1,2,3..

Finally, plugging that into Eq. , we have the depth of the potential well for a given number
of bound states.

R

8ma?

Vo (2n —1)

Part 2 :
In general, the differential probability is given by the following,

dN

1 9 1 o0 1 o ipm
ap —%kpw >| —%/ dr <plr >< x| >= — de ) (x)

oo 2mh J_

Then, using our equation for 1 (x), we have the following.

dN 1 a ipT e ipx
% =5= </0 dxen sin(kx) + A/a dxeﬁe_qm>

Note, we are ignoring the normalization constant, as its solution is trivial to find and would
not contribute meaningfully to this solution. Which then can be simplified to,

dN ]_ a ipxr - a ipx . o0 ipx
—_— = 22’/ dre® etkr 2@'/ dxe ™™ ek 4 A/ dre® e~
dp 2mth 0 0 a

This then becomes very easy to integrate.

hk —p hk +p o hqg — ip
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Problem 2

Consider a particle, mass m, under the influence of a potential
2

V(z) =VoO(—x) — ;—mﬂ5(x —a), Vy— o0, 8>0.

1. Find a trancendental equation for the energy of a bound state.

2. Consider now a plane wave incident on the potential from x = oo in the —2 direction
which is reflected off the potential. For z > a, the waveform is e=*** — e2¥¢?ke  Find
the phase shift of the reflected wave.

Part 1 :
First, determine the general form of the wavefunctions. Most generally,

Yr(z) = Ae®™ + Be % and ¢ (z) = e %

Under the condition that Vj — oo, the boundary condition ¥;(0) = 0 must be met, thus
A+ B = 0. Applying this, we get that

Yr(z) = Ae®™ — Ae™ ¥ = (C'sinh(qx)

for a new constant C' = 2A.

Applying the boundary conditions:

1. ¥1(2)|z=a = ¥11(2)|z=q, thus: Csinh(ga) = e,

2. %@Z)H@ﬂx:a — %w1($)|m:a = p(x), thus: —ge 9 — qC cosh(ga) = Se~.
Simplifying the second BC, we get C cosh(ga) = (%ﬁ — 1) e 1 = %e*q“. Then dividing
the first BC by the second, we get:

q

tanh(qa) = .

Recalling that ¢ = \/2mE/h?, we have found a transcendental equation for the energy of a
bound state.

Part 2 :
First, we need to reconsider the wavefunctions. Most generally,

Yr(x) = Asin(kz) + B cos(kz) and ¥ (z) = e % — 2Pk — gin(ka + 6).
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Again, under the condition that Vi — oo, the boundary condition ¢;(0) = 0 must be met,
thus Asin(0) + Bcos(0) =0, so B = 0. Then we can simplify the waveform:

w[[(ili) = ASIH(/CQZ)
Applying the boundary conditions:

1. ¥1(2)|s=a = ¥11(T)|z=a, thus: Asin(ka) = sin(ka + 9).
2. %wn(mﬂx:a — D h(2)]o—a = BU(x), thus: kcos(ka — §) — kA cos(ka) = Bsin(ka — 9).

Simplifying the second BC, we get Acos(ka) = cos(ka — §) — %sin(lm — ). Then dividing

the second BC by the first, we get:

cot(ka) = cot(ka — 9) — %

and solving for the phase shift yields:

§ =cot™* (cot(k’a) + %) — ka.
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Problem 3

Here we will examine two problems dealing with a simple harmonic oscillator.

1. Calculate (m|(a'a)Xa'(aa™)M|n) where m =1 and n = 0.

2. In the case of the three dimensional case of a harmonic osciallator, given the quan-
tum numbers n,, n,, and n,, and that N = n, +n, + n., find the degeneracy in
eigenstates up to N = 2.

Part 1 :
Here, we make use of the fact that the raising and lowering operators, respectively, act on
eigenstates of the harmonic oscillator in the following way: af|n) = v/n+1|n+1) and

aln+1)=+/n+1|n).

Next, we can start with the (aa")™ operator. Ignoring the power of M, we can see that
the raising operator raises the state with a coefficient of v/n + 1 and the lowering opera-
tor returns to the |n) state with a coefficient of (n 4+ 1). Acting M times, we can sim-
plify the expression to (n + 1) (m|(a'a)Xa'|n). Then we apply the raising operator again
to get vn+ 1(n + 1) (m|(a’a)®|n +1). Now we must apply the (a'a)X operator (also
known as the number operator). We can apply this to the |n+ 1) state to get the form
(n+ 1)EM/n + 1 (m|n + 1).

Finally, given the states m = 1 and n = 0, our expression simplifies to 157 (1]1) = 1.

Part 2 :
In the one dimensional case, we know the energy to scale as E,, = hw(n + %) In the three
dimensional case, each dimension contributes its own similar term to the energy. Thus the

energy becomes Ey = hw(n, + ) + hw(ny + 3) + hw(n. + 1) = hw(ng +ny +n. + 3). If

we substitute the given relation, we get Ey = hw(N + 2). Now, we must find the number of
states that correspond to each of the first 3 energy levels.

In the ground state case, N = 0, there is obviously only one state where each quantum
number is 0; so there is no degeneracy.

For N = 1, we need all the possible positive integers of n,, n,, and n, that add to one. Since
the numbers cannot be negative, we have three solutions:

ng=1,n,=0,n,=0
ng =0,n,=1,n,=0
nge=0,mn,=0,n, =1

And thus, we have a degeneracy of three.
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Finally in the N = 2 case, we again need to find each combination of integers that will result
in n, +n, +n, = 2. We can start by listing all the states with one dimension in the second
excited state:

Ng =2,n,=0,n, =0

ng =0,n,=2,n,=0
ng =0,n, =0,n, =2
Additionally, we must include both combinations of n, = 1:
ne,=1n,=1,n,=0
ne=1n,=0,n,=1
, and the remaining state in which n, = n, = 1:
ne=0mn,=1n,=1

All six of these states correspond to the same energy, meaning the degeneracy is 6 for
n—+ 2.



