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Problem 1
Consider the one dimensional potential,

V (x) =


∞ x < 0
−Vo 0 < x < a

0 x > a

1. For a fixed a find Vo for n bound states

2. At t = 0, the potential instantly disappears.For a particle originally in the ground
state of the potential, what is the differential probability, dN/dp, for observing the
particle with momentum p?

Part 1 :
There is one main assumption when solving for the bound states, that E = 0. This comes
from the idea that this particle is not quite bound, E < 0, and not free either, E > 0. So we
can start by writing the most general wave function.

ψ(x) =


0 x < 0

sin(kx) 0 < x < a
Ae−qx x > a

So, it can be seen from our assumption, that q = 2mE
~2 = 0, and so ψ(x > a) = A. Then,

Using the Schroedinger equation, we can find an expression for Vo.

E = −Vo +
~2k2

2m
⇒ Vo =

~2k2

2m

Now, using the fact that ψ(x > a) is a constant, we can say that,

d

dx
sin(kx)

∣∣∣∣∣
a

= kcos(ka) = 0
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And so, for n bound states, ka is equal to odd integer multiples of π
2

ka = (2n− 1)
π

2
For m = 1, 2, 3...

Finally, plugging that into Eq. , we have the depth of the potential well for a given number
of bound states.

Vo =
~2π2

8ma2
(2n− 1)

Part 2 :

In general, the differential probability is given by the following,

dN

dp
=

1

2π~
|< p|ψ >|2 =

1

2π~

∫ ∞
−∞

dx < p|x >< x|ψ >=
1

2π~

∫ ∞
−∞

dxe
ipx
~ ψ(x)

Then, using our equation for ψ(x), we have the following.

dN

dp
=

1

2π~

(∫ a

0

dxe
ipx
~ sin(kx) + A

∫ ∞
a

dxe
ipx
~ e−qx

)
Note, we are ignoring the normalization constant, as its solution is trivial to find and would
not contribute meaningfully to this solution. Which then can be simplified to,

dN

dp
=

1

2π~

(
2i

∫ a

0

dxe
ipx
~ eikx − 2i

∫ a

0

dxe
ipx
~ e−ikx + A

∫ ∞
a

dxe
ipx
~ e−qx

)
This then becomes very easy to integrate.

dN

dp
=

1

π

(
−1 + eai(p/~−p)

~k − p
−1 + eai(p/~+p)

~k + p

)
+
A

2π

(
−ea(q−ip/~)

~q − ip

)
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Problem 2
Consider a particle, mass m, under the influence of a potential

V (x) = V0Θ(−x)− ~2

2m
βδ(x− a), V0 →∞, β > 0.

1. Find a trancendental equation for the energy of a bound state.

2. Consider now a plane wave incident on the potential from x =∞ in the−x̂ direction
which is reflected off the potential. For x > a, the waveform is e−ikx−e2iδeikx. Find
the phase shift of the reflected wave.

Part 1 :
First, determine the general form of the wavefunctions. Most generally,

ψI(x) = Aeqx +Be−qx and ψII(x) = e−qx.

Under the condition that V0 → ∞, the boundary condition ψI(0) = 0 must be met, thus
A+B = 0. Applying this, we get that

ψI(x) = Aeqx − Ae−qx = C sinh(qx)

for a new constant C = 2A.

Applying the boundary conditions:

1. ψI(x)|x=a = ψII(x)|x=a, thus: C sinh(qa) = e−qa.

2. ∂
∂x
ψII(x)|x=a − ∂

∂x
ψI(x)|x=a = βψ(x), thus: −qe−qa − qC cosh(qa) = βe−qa.

Simplifying the second BC, we get C cosh(qa) =
(
−β
q
− 1
)
e−qa = −β−q

q
e−qa. Then dividing

the first BC by the second, we get:

tanh(qa) = − q

β + q
.

Recalling that q =
√

2mE/~2, we have found a transcendental equation for the energy of a
bound state.

Part 2 :
First, we need to reconsider the wavefunctions. Most generally,

ψI(x) = A sin(kx) +B cos(kx) and ψII(x) = e−ikx − e2iδeikx = sin(kx+ δ).
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Again, under the condition that V0 → ∞, the boundary condition ψI(0) = 0 must be met,
thus A sin(0) +B cos(0) = 0, so B = 0. Then we can simplify the waveform:

ψII(x) = A sin(kx).

Applying the boundary conditions:

1. ψI(x)|x=a = ψII(x)|x=a, thus: A sin(ka) = sin(ka+ δ).

2. ∂
∂x
ψII(x)|x=a − ∂

∂x
ψI(x)|x=a = βψ(x), thus: k cos(ka− δ)− kA cos(ka) = β sin(ka− δ).

Simplifying the second BC, we get A cos(ka) = cos(ka − δ) − β
k

sin(ka − δ). Then dividing
the second BC by the first, we get:

cot(ka) = cot(ka− δ)− β

k
,

and solving for the phase shift yields:

δ = cot−1
(

cot(ka) +
β

k

)
− ka.
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Problem 3
Here we will examine two problems dealing with a simple harmonic oscillator.

1. Calculate 〈m|(a†a)Ka†(aa†)M |n〉 where m = 1 and n = 0.

2. In the case of the three dimensional case of a harmonic osciallator, given the quan-
tum numbers nx, ny, and nz, and that N = nx + ny + nz, find the degeneracy in
eigenstates up to N = 2.

Part 1 :
Here, we make use of the fact that the raising and lowering operators, respectively, act on
eigenstates of the harmonic oscillator in the following way: a† |n〉 =

√
n+ 1 |n+ 1〉 and

a |n+ 1〉 =
√
n+ 1 |n〉.

Next, we can start with the (aa†)M operator. Ignoring the power of M , we can see that
the raising operator raises the state with a coefficient of

√
n+ 1 and the lowering opera-

tor returns to the |n〉 state with a coefficient of (n + 1). Acting M times, we can sim-
plify the expression to (n + 1)M 〈m|(a†a)Ka†|n〉. Then we apply the raising operator again
to get

√
n+ 1(n + 1)M 〈m|(a†a)K |n+ 1〉. Now we must apply the (a†a)K operator (also

known as the number operator). We can apply this to the |n+ 1〉 state to get the form
(n+ 1)K+M

√
n+ 1 〈m|n+ 1〉.

Finally, given the states m = 1 and n = 0, our expression simplifies to 1K+M 〈1|1〉 = 1.

Part 2 :

In the one dimensional case, we know the energy to scale as En = ~ω(n + 1
2
). In the three

dimensional case, each dimension contributes its own similar term to the energy. Thus the
energy becomes EN = ~ω(nx + 1

2
) + ~ω(ny + 1

2
) + ~ω(nz + 1

2
) = ~ω(nx + ny + nz + 3

2
). If

we substitute the given relation, we get EN = ~ω(N + 3
2
). Now, we must find the number of

states that correspond to each of the first 3 energy levels.

In the ground state case, N = 0, there is obviously only one state where each quantum
number is 0; so there is no degeneracy.

For N = 1, we need all the possible positive integers of nx, ny, and nz that add to one. Since
the numbers cannot be negative, we have three solutions:

nx = 1, ny = 0, nz = 0

nx = 0, ny = 1, nz = 0

nx = 0, ny = 0, nz = 1

And thus, we have a degeneracy of three.
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Finally in the N = 2 case, we again need to find each combination of integers that will result
in nx + ny + nz = 2. We can start by listing all the states with one dimension in the second
excited state:

nx = 2, ny = 0, nz = 0

nx = 0, ny = 2, nz = 0

nx = 0, ny = 0, nz = 2

Additionally, we must include both combinations of nx = 1:

nx = 1, ny = 1, nz = 0

nx = 1, ny = 0, nz = 1

, and the remaining state in which ny = nz = 1:

nx = 0, ny = 1, nz = 1

. All six of these states correspond to the same energy, meaning the degeneracy is 6 for
n+ 2.

6


