Scott Campbell

Problem 1

Consider the one dimensional potential,

$$
V(x)=\left\{\begin{array}{rc}
\infty & x<0 \\
-V_{o} & 0<x<a \\
0 & x>a
\end{array}\right.
$$

1. For a fixed a find V_{o} for n bound states
2. At $t=0$, the potential instantly disappears.For a particle originally in the ground state of the potential, what is the differential probability, $\mathrm{dN} / \mathrm{dp}$, for observing the particle with momentum p ?

Part 1:

There is one main assumption when solving for the bound states, that $E=0$. This comes from the idea that this particle is not quite bound, $E<0$, and not free either, $E>0$. So we can start by writing the most general wave function.

$$
\psi(x)=\left\{\begin{array}{rc}
0 & x<0 \\
\sin (k x) & 0<x<a \\
A e^{-q x} & x>a
\end{array}\right.
$$

So, it can be seen from our assumption, that $q=\frac{2 m E}{\hbar^{2}}=0$, and so $\psi(x>a)=A$. Then, Using the Schroedinger equation, we can find an expression for V_{o}.

$$
E=-V_{o}+\frac{\hbar^{2} k^{2}}{2 m} \Rightarrow V_{o}=\frac{\hbar^{2} k^{2}}{2 m}
$$

Now, using the fact that $\psi(x>a)$ is a constant, we can say that,

$$
\left.\frac{d}{d x} \sin (k x)\right|_{a}=k \cos (k a)=0
$$

Scott Campbell
Elizabeth Kowalczyk
Chapter 2 Review Problems December 6, 2021
Mack Smith

And so, for n bound states, $k a$ is equal to odd integer multiples of $\frac{\pi}{2}$

$$
k a=(2 n-1) \frac{\pi}{2} \quad \text { For } \quad m=1,2,3 \ldots
$$

Finally, plugging that into Eq., we have the depth of the potential well for a given number of bound states.

$$
V_{o}=\frac{\hbar^{2} \pi^{2}}{8 m a^{2}}(2 n-1)
$$

Part 2:

In general, the differential probability is given by the following,

$$
\frac{d N}{d p}=\frac{1}{2 \pi \hbar}|<p| \psi>\left.\right|^{2}=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} d x<p|x><x| \psi>=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} d x e^{\frac{i p x}{\hbar}} \psi(x)
$$

Then, using our equation for $\psi(x)$, we have the following.

$$
\frac{d N}{d p}=\frac{1}{2 \pi \hbar}\left(\int_{0}^{a} d x e^{\frac{i p x}{\hbar}} \sin (k x)+A \int_{a}^{\infty} d x e^{\frac{i p x}{\hbar}} e^{-q x}\right)
$$

Note, we are ignoring the normalization constant, as its solution is trivial to find and would not contribute meaningfully to this solution. Which then can be simplified to,

$$
\frac{d N}{d p}=\frac{1}{2 \pi \hbar}\left(2 i \int_{0}^{a} d x e^{\frac{i p x}{\hbar}} e^{i k x}-2 i \int_{0}^{a} d x e^{\frac{i p x}{\hbar}} e^{-i k x}+A \int_{a}^{\infty} d x e^{\frac{i p x}{\hbar}} e^{-q x}\right)
$$

This then becomes very easy to integrate.

$$
\frac{d N}{d p}=\frac{1}{\pi}\left(\frac{-1+e^{a i(p / \hbar-p)}}{\hbar k-p} \frac{-1+e^{a i(p / \hbar+p)}}{\hbar k+p}\right)+\frac{A}{2 \pi}\left(\frac{-e^{a(q-i p / \hbar)}}{\hbar q-i p}\right)
$$

Scott Campbell

Problem 2

Consider a particle, mass m, under the influence of a potential

$$
V(x)=V_{0} \Theta(-x)-\frac{\hbar^{2}}{2 m} \beta \delta(x-a), \quad V_{0} \rightarrow \infty, \beta>0 .
$$

1. Find a trancendental equation for the energy of a bound state.
2. Consider now a plane wave incident on the potential from $x=\infty$ in the $-\hat{x}$ direction which is reflected off the potential. For $x>a$, the waveform is $e^{-i k x}-e^{2 i \delta} e^{i k x}$. Find the phase shift of the reflected wave.

Part 1 :

$\overline{\text { First, determine the general form of the wavefunctions. Most generally, }}$

$$
\psi_{I}(x)=A e^{q x}+B e^{-q x} \text { and } \psi_{I I}(x)=e^{-q x} .
$$

Under the condition that $V_{0} \rightarrow \infty$, the boundary condition $\psi_{I}(0)=0$ must be met, thus $A+B=0$. Applying this, we get that

$$
\psi_{I}(x)=A e^{q x}-A e^{-q x}=C \sinh (q x)
$$

for a new constant $C=2 A$.

Applying the boundary conditions:

1. $\left.\psi_{I}(x)\right|_{x=a}=\left.\psi_{I I}(x)\right|_{x=a}$, thus: $C \sinh (q a)=e^{-q a}$.
2. $\left.\frac{\partial}{\partial x} \psi_{I I}(x)\right|_{x=a}-\left.\frac{\partial}{\partial x} \psi_{I}(x)\right|_{x=a}=\beta \psi(x)$, thus: $-q e^{-q a}-q C \cosh (q a)=\beta e^{-q a}$.

Simplifying the second BC, we get $C \cosh (q a)=\left(\frac{-\beta}{q}-1\right) e^{-q a}=\frac{-\beta-q}{q} e^{-q a}$. Then dividing the first BC by the second, we get:

$$
\tanh (q a)=-\frac{q}{\beta+q} .
$$

Recalling that $q=\sqrt{2 m E / \hbar^{2}}$, we have found a transcendental equation for the energy of a bound state.

Part 2:

$\overline{\text { First, we }}$ need to reconsider the wavefunctions. Most generally,

$$
\psi_{I}(x)=A \sin (k x)+B \cos (k x) \text { and } \psi_{I I}(x)=e^{-i k x}-e^{2 i \delta} e^{i k x}=\sin (k x+\delta)
$$

Scott Campbell

Again, under the condition that $V_{0} \rightarrow \infty$, the boundary condition $\psi_{I}(0)=0$ must be met, thus $A \sin (0)+B \cos (0)=0$, so $B=0$. Then we can simplify the waveform:

$$
\psi_{I I}(x)=A \sin (k x)
$$

Applying the boundary conditions:

1. $\left.\psi_{I}(x)\right|_{x=a}=\left.\psi_{I I}(x)\right|_{x=a}$, thus: $A \sin (k a)=\sin (k a+\delta)$.
2. $\left.\frac{\partial}{\partial x} \psi_{I I}(x)\right|_{x=a}-\left.\frac{\partial}{\partial x} \psi_{I}(x)\right|_{x=a}=\beta \psi(x)$, thus: $k \cos (k a-\delta)-k A \cos (k a)=\beta \sin (k a-\delta)$.

Simplifying the second BC , we get $A \cos (k a)=\cos (k a-\delta)-\frac{\beta}{k} \sin (k a-\delta)$. Then dividing the second BC by the first, we get:

$$
\cot (k a)=\cot (k a-\delta)-\frac{\beta}{k}
$$

and solving for the phase shift yields:

$$
\delta=\cot ^{-1}\left(\cot (k a)+\frac{\beta}{k}\right)-k a
$$

Scott Campbell
Elizabeth Kowalczyk
Mack Smith
Chapter 2 Review Problems
Quantum 1

Problem 3

Here we will examine two problems dealing with a simple harmonic oscillator.

1. Calculate $\langle m|\left(a^{\dagger} a\right)^{K} a^{\dagger}\left(a a^{\dagger}\right)^{M}|n\rangle$ where $m=1$ and $n=0$.
2. In the case of the three dimensional case of a harmonic osciallator, given the quantum numbers n_{x}, n_{y}, and n_{z}, and that $N=n_{x}+n_{y}+n_{z}$, find the degeneracy in eigenstates up to $N=2$.

Part 1:

Here, we make use of the fact that the raising and lowering operators, respectively, act on eigenstates of the harmonic oscillator in the following way: $a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$ and $a|n+1\rangle=\sqrt{n+1}|n\rangle$.

Next, we can start with the $\left(a a^{\dagger}\right)^{M}$ operator. Ignoring the power of M, we can see that the raising operator raises the state with a coefficient of $\sqrt{n+1}$ and the lowering operator returns to the $|n\rangle$ state with a coefficient of $(n+1)$. Acting M times, we can simplify the expression to $(n+1)^{M}\langle m|\left(a^{\dagger} a\right)^{K} a^{\dagger}|n\rangle$. Then we apply the raising operator again to get $\sqrt{n+1}(n+1)^{M}\langle m|\left(a^{\dagger} a\right)^{K}|n+1\rangle$. Now we must apply the $\left(a^{\dagger} a\right)^{K}$ operator (also known as the number operator). We can apply this to the $|n+1\rangle$ state to get the form $(n+1)^{K+M} \sqrt{n+1}\langle m \mid n+1\rangle$.
Finally, given the states $m=1$ and $n=0$, our expression simplifies to $1^{K+M}\langle 1 \mid 1\rangle=1$.

Part 2:

In the one dimensional case, we know the energy to scale as $E_{n}=\hbar \omega\left(n+\frac{1}{2}\right)$. In the three dimensional case, each dimension contributes its own similar term to the energy. Thus the energy becomes $E_{N}=\hbar \omega\left(n_{x}+\frac{1}{2}\right)+\hbar \omega\left(n_{y}+\frac{1}{2}\right)+\hbar \omega\left(n_{z}+\frac{1}{2}\right)=\hbar \omega\left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)$. If we substitute the given relation, we get $E_{N}=\hbar \omega\left(N+\frac{3}{2}\right)$. Now, we must find the number of states that correspond to each of the first 3 energy levels.

In the ground state case, $N=0$, there is obviously only one state where each quantum number is 0 ; so there is no degeneracy.

For $N=1$, we need all the possible positive integers of n_{x}, n_{y}, and n_{z} that add to one. Since the numbers cannot be negative, we have three solutions:

$$
\begin{aligned}
& n_{x}=1, n_{y}=0, n_{z}=0 \\
& n_{x}=0, n_{y}=1, n_{z}=0 \\
& n_{x}=0, n_{y}=0, n_{z}=1
\end{aligned}
$$

And thus, we have a degeneracy of three.

Scott Campbell
Elizabeth Kowalczyk
Quantum 1
Mack Smith
Chapter 2 Review Problems December 6, 2021

Finally in the $N=2$ case, we again need to find each combination of integers that will result in $n_{x}+n_{y}+n_{z}=2$. We can start by listing all the states with one dimension in the second excited state:

$$
\begin{aligned}
& n_{x}=2, n_{y}=0, n_{z}=0 \\
& n_{x}=0, n_{y}=2, n_{z}=0 \\
& n_{x}=0, n_{y}=0, n_{z}=2
\end{aligned}
$$

Additionally, we must include both combinations of $n_{x}=1$:

$$
\begin{aligned}
& n_{x}=1, n_{y}=1, n_{z}=0 \\
& n_{x}=1, n_{y}=0, n_{z}=1
\end{aligned}
$$

, and the remaining state in which $n_{y}=n_{z}=1$:

$$
n_{x}=0, n_{y}=1, n_{z}=1
$$

. All six of these states correspond to the same energy, meaning the degeneracy is 6 for $n+2$.

