Problem 1

Consider the one dimensional potential,

$$V(x) = \begin{cases} \infty & x < 0 \\ -V_o & 0 < x < a \\ 0 & x > a \end{cases}$$

- 1. For a fixed a find V_o for n bound states
- 2. At t = 0, the potential instantly disappears.For a particle originally in the ground state of the potential, what is the differential probability, dN/dp, for observing the particle with momentum p?

Problem 2

Consider a particle, mass m, under the influence of a potential

$$V(x) = V_0 \Theta(-x) - \frac{\hbar^2}{2m} \beta \delta(x-a), \quad V_0 \to \infty, \ \beta > 0.$$

- 1. Find a trancendental equation for the energy of a bound state.
- 2. Consider now a plane wave incident on the potential from $x = \infty$ in the $-\hat{x}$ direction which is reflected off the potential. For x > a, the waveform is $e^{-ikx} e^{2i\delta}e^{ikx}$. Find the phase shift of the reflected wave.

Problem 3

Here we will examine two problems dealing with a simple harmonic oscillator.

- 1. Calculate $\langle m | (a^{\dagger}a)^{K} a^{\dagger} (aa^{\dagger})^{M} | n \rangle$ where m = 1 and n = 0.
- 2. In the case of the three dimensional case of a harmonic osciallator, given the quantum numbers n_x , n_y , and n_z , and that $N = n_x + n_y + n_z$, find the degeneracy in eigenstates up to N = 2.