Scott Campbell
Elizabeth Kowalczyk

Chapter 2 Review Problems December 6, 2021

Problem 1

Consider the one dimensional potential,

$$
V(x)=\left\{\begin{array}{rc}
\infty & x<0 \\
-V_{o} & 0<x<a \\
0 & x>a
\end{array}\right.
$$

1. For a fixed a find V_{o} for n bound states
2. At $t=0$, the potential instantly disappears.For a particle originally in the ground state of the potential, what is the differential probability, $\mathrm{dN} / \mathrm{dp}$, for observing the particle with momentum p ?

Scott Campbell
Elizabeth Kowalczyk
Quantum 1
Mack Smith
Chapter 2 Review Problems December 6, 2021

Problem 2

Consider a particle, mass m, under the influence of a potential

$$
V(x)=V_{0} \Theta(-x)-\frac{\hbar^{2}}{2 m} \beta \delta(x-a), \quad V_{0} \rightarrow \infty, \beta>0
$$

1. Find a trancendental equation for the energy of a bound state.
2. Consider now a plane wave incident on the potential from $x=\infty$ in the $-\hat{x}$ direction which is reflected off the potential. For $x>a$, the waveform is $e^{-i k x}-e^{2 i \delta} e^{i k x}$. Find the phase shift of the reflected wave.

Scott Campbell
Elizabeth Kowalczyk
Quantum 1
Mack Smith
Chapter 2 Review Problems December 6, 2021

Problem 3

Here we will examine two problems dealing with a simple harmonic oscillator.

1. Calculate $\langle m|\left(a^{\dagger} a\right)^{K} a^{\dagger}\left(a a^{\dagger}\right)^{M}|n\rangle$ where $m=1$ and $n=0$.
2. In the case of the three dimensional case of a harmonic osciallator, given the quantum numbers n_{x}, n_{y}, and n_{z}, and that $N=n_{x}+n_{y}+n_{z}$, find the degeneracy in eigenstates up to $N=2$.
