PHY851 Final Preparation (Chapter 8)

Alec, Charlie, Nick

December 2021

Problems (Scattering at Low Energies)

A beam of spinless particles of mass m and kinetic energy E is aimed as a spherically symmetric repulsive potential

$$
V(r)=V_{0} \Theta(a-r)
$$

Assume $E<V_{0}$.

1. Find the $l=0$ phase shift as a function of the incoming wave number k.
2. What is the cross section as $k \rightarrow 0$? What is the scattering length?
3. What is the relative probability for a particle in the wave packet to be at the origin compared to the probability with no potential? That is, if ρ_{0} is the probability density at $r=0$ in the absence of the potential and ρ is the density with the potential, find $\frac{\rho}{\rho_{0}}$.

Solutions

1. Using the definition $\psi(k, r)=r R_{l=0}(k, r)$, one can see the Schrodinger Equation looks exactly like the one-dimensional case. We have solutions of the following forms.

In region I, where $r<a$, we have

$$
\begin{equation*}
\psi_{I}(r) \sim A \sinh (q r) \quad, \quad q=\frac{\sqrt{2 m\left(V_{0}-E\right)}}{\hbar} \tag{1}
\end{equation*}
$$

In region II, where $r>a$, we have a plane wave

$$
\begin{equation*}
\psi_{I I}(r) \sim \sin (k r+\delta) \quad, \quad k=\frac{\sqrt{2 m(E)}}{\hbar} \tag{2}
\end{equation*}
$$

Matching boundary conditions at $r=a$,

$$
\begin{align*}
A \sinh (q a) & =\sin (k a+\delta) \tag{3}\\
A q \cosh (q a) & =k \cos (k a+\delta) \tag{4}
\end{align*}
$$

Dividing the top equation by the bottom, we see

$$
\frac{1}{q} \tanh (q a)=\frac{1}{k} \tan (k a+\delta)
$$

Rearranging,

$$
\begin{gather*}
\tan (k a+\delta)=\frac{k}{q} \tanh (q a) \\
\delta=\tan ^{-1}\left(\frac{k}{q} \tanh (q a)\right)-k a \tag{5}
\end{gather*}
$$

2. The total cross-section as a function of δ_{l} is given by:

$$
\begin{equation*}
\sigma=\frac{4 \pi}{k^{2}} \sum(2 l+1) \sin ^{2} \delta_{l} \tag{6}
\end{equation*}
$$

In this case, we are looking at s-waves, so $l=0$. At small k, we can rewrite our phase shift:

$$
\begin{equation*}
\delta_{0}(k) \approx \frac{k}{q} \tanh (q a)-k a \tag{7}
\end{equation*}
$$

since

$$
\tan ^{-1} x \approx x
$$

for small x.
Then our total cross-section becomes

$$
\begin{align*}
& \sigma \approx \frac{4 \pi}{k^{2}} \delta_{0}^{2}=\frac{4 \pi}{k^{2}}\left(\frac{k}{q} \tanh (q a)-k a\right)^{2} \\
&=4 \pi\left(\frac{1}{q} \tanh (q a)-a\right)^{2} \\
& \sigma \approx 4 \pi a^{2}\left(1-\frac{\tanh (q a)}{q a}\right)^{2} \tag{8}
\end{align*}
$$

as $k \rightarrow 0$. Note that letting $k \rightarrow 0$ is equivalent to letting the incident beam energy $E \rightarrow 0$.
The cross-section is dominated by the $l=0$ contribution at low energy. To find the scattering length α, we recall its definition:

$$
\begin{equation*}
\alpha \equiv-\left.\frac{\partial}{\partial k} \delta_{0}(k)\right|_{k=0} \tag{9}
\end{equation*}
$$

The form of the phase shift in Eq. (7) makes the derivative straightforward to calculate:

$$
\begin{equation*}
\alpha=a-\frac{1}{q} \tanh (q a) \tag{10}
\end{equation*}
$$

Note that:

$$
\alpha^{2}=a^{2}\left(1-\frac{\tanh (q a)}{q a}\right)^{2}
$$

so we can express the cross-section (in Eq. (8)) in terms of the scattering length as:

$$
\begin{equation*}
\sigma \approx 4 \pi \alpha^{2} \tag{11}
\end{equation*}
$$

If we let $V_{0} \rightarrow \infty$, then $q \rightarrow \infty$, and the scattering length is the width of the well:

$$
\begin{gathered}
\alpha=a \\
\sigma=4 \pi a^{2} \\
\delta_{0}(k) \approx-k a .
\end{gathered}
$$

The resulting cross-section is four times the classical hard-sphere scattering cross-section, πa^{2}.
3. Recalling equation (1) we can see that the probability density of observing a particle for $r<a$ with the potential is:

$$
\begin{equation*}
P=A^{2} \frac{\sinh ^{2}(q r)}{(k r)^{2}} \tag{12}
\end{equation*}
$$

The probability density of observing a particle for $r<a$ without the potential is:

$$
\begin{equation*}
P_{0}=\frac{\sin ^{2}(k r)}{(k r)^{2}} \tag{13}
\end{equation*}
$$

since the incoming wave must match the outgoing wave (equation (2), where $\delta=0$ since $V_{0}=0$). Therefore, the relative probability for a particle in the wave packet to be observed at the origin compared to the probability without the potential is:

$$
\begin{align*}
\frac{\rho}{\rho_{0}} & =\left.A^{2} \frac{\sinh ^{2}(q r)}{\sin ^{2}(k r)}\right|_{r=0} \tag{14}\\
& =A^{2} \frac{q^{2}}{k^{2}}
\end{align*}
$$

Which can be found using L'Hospital's rule. Next rearranging (3) we can express A as:

$$
\begin{equation*}
A=\frac{\sin (k a+\delta)}{\sinh (k a)} \tag{15}
\end{equation*}
$$

Therefore our expression for the relative probability becomes:

$$
\begin{equation*}
\frac{\rho}{\rho_{0}}=\frac{q^{2} \sin ^{2}(k a+\delta)}{k^{2} \sinh ^{2}(k a)} \tag{16}
\end{equation*}
$$

Using (5) and the trig identity, $\sin ^{2}\left(\tan ^{-1} x\right)=1-\frac{1}{1+x^{2}}$, one can show that:

$$
\begin{align*}
\sin ^{2}(k a+\delta) & =1-\frac{1}{1+\frac{k^{2}}{q^{2}} \tanh ^{2}(q a)} \\
& =\frac{k^{2} \sinh ^{2}(q a)}{q^{2} \cosh ^{2}(q a)+k^{2} \sinh ^{2}(q a)} \tag{17}
\end{align*}
$$

inserting (17) back into (16) gives us our final answer:

$$
\begin{equation*}
\frac{\rho}{\rho_{0}}=\frac{1}{\cosh ^{2}(q a)+\frac{k^{2}}{q^{2}} \sinh ^{2}(q a)} \tag{18}
\end{equation*}
$$

