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Problems (Scattering at Low Energies)

A beam of spinless particles of mass m and kinetic energy E is aimed as a spherically symmetric repulsive
potential

V (r) = V0Θ(a− r)

Assume E < V0.

1. Find the l = 0 phase shift as a function of the incoming wave number k.

2. What is the cross section as k → 0? What is the scattering length?

3. What is the relative probability for a particle in the wave packet to be at the origin compared to the
probability with no potential? That is, if ρ0 is the probability density at r = 0 in the absence of the
potential and ρ is the density with the potential, find ρ

ρ0
.

Solutions

1. Using the definition ψ(k, r) = rRl=0(k, r), one can see the Schrodinger Equation looks exactly like the
one-dimensional case. We have solutions of the following forms.

In region I, where r < a, we have

ψI(r) ∼ A sinh(qr) , q =

√
2m(V0 − E)

ℏ
(1)

In region II, where r > a, we have a plane wave

ψII(r) ∼ sin(kr + δ) , k =

√
2m(E)

ℏ
(2)

Matching boundary conditions at r = a,

A sinh(qa) = sin(ka+ δ) (3)

Aq cosh(qa) = k cos(ka+ δ) (4)

Dividing the top equation by the bottom, we see

1

q
tanh(qa) =

1

k
tan(ka+ δ)
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Rearranging,

tan(ka+ δ) =
k

q
tanh(qa)

δ = tan−1

(
k

q
tanh(qa)

)
− ka (5)

2. The total cross-section as a function of δl is given by:

σ =
4π

k2

∑
(2l + 1) sin2 δl. (6)

In this case, we are looking at s-waves, so l = 0. At small k, we can rewrite our phase shift:

δ0(k) ≈
k

q
tanh(qa)− ka (7)

since
tan−1 x ≈ x

for small x.

Then our total cross-section becomes

σ ≈ 4π

k2
δ20 =

4π

k2

(
k

q
tanh(qa)− ka

)2

= 4π

(
1

q
tanh(qa)− a

)2

σ ≈ 4πa2
(
1− tanh(qa)

qa

)2

(8)

as k → 0. Note that letting k → 0 is equivalent to letting the incident beam energy E → 0.

The cross-section is dominated by the l = 0 contribution at low energy. To find the scattering length
α, we recall its definition:

α ≡ − ∂

∂k
δ0(k)|k=0. (9)

The form of the phase shift in Eq. (7) makes the derivative straightforward to calculate:

α = a− 1

q
tanh(qa). (10)

Note that:

α2 = a2
(
1− tanh(qa)

qa

)2
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so we can express the cross-section (in Eq. (8)) in terms of the scattering length as:

σ ≈ 4πα2. (11)

If we let V0 → ∞, then q → ∞, and the scattering length is the width of the well:

α = a

σ = 4πa2

δ0(k) ≈ −ka.

The resulting cross-section is four times the classical hard-sphere scattering cross-section, πa2.

3. Recalling equation (1) we can see that the probability density of observing a particle for r < a with
the potential is:

P = A2 sinh
2(qr)

(kr)2
(12)

The probability density of observing a particle for r < a without the potential is:

P0 =
sin2(kr)

(kr)2
(13)

since the incoming wave must match the outgoing wave (equation (2), where δ = 0 since V0 = 0).
Therefore, the relative probability for a particle in the wave packet to be observed at the origin
compared to the probability without the potential is:

ρ

ρ0
= A2 sinh

2(qr)

sin2(kr)

∣∣∣∣
r=0

= A2 q
2

k2

(14)

Which can be found using L’Hospital’s rule. Next rearranging (3) we can express A as:

A =
sin(ka+ δ)

sinh(ka)
(15)

Therefore our expression for the relative probability becomes:

ρ

ρ0
=
q2 sin2(ka+ δ)

k2 sinh2(ka)
(16)

Using (5) and the trig identity, sin2(tan−1 x) = 1− 1
1+x2 , one can show that:

sin2(ka+ δ) = 1− 1

1 + k2

q2 tanh2(qa)

=
k2 sinh2(qa)

q2 cosh2(qa) + k2 sinh2(qa)

(17)
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inserting (17) back into (16) gives us our final answer:

ρ

ρ0
=

1

cosh2(qa) + k2

q2 sinh2(qa)
(18)
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