Adding Angular Momentum A neutron and proton occupy the ground state of a harmonic oscillator. The particles then feel two additional sources of interaction. First, they have a spin-spin interation,

$$
V_{s s}=\alpha S_{n} \cdot S_{p}
$$

and secondly, they experience an external magnetic field

$$
V_{B}=-\left(\mu_{n} S_{n}+\mu_{p} S_{p}\right) \cdot \vec{B}
$$

Letting J and M reference the total angular momentum and its projection, and letting m_{n} and m_{s} reference the projections of the neutron and protons spins,
(a) (10 pts) Circle the operators that commute with the Hamiltonian

- The magnitude of the total angular momentum, $\left|\overrightarrow{J^{2}}\right|=\hbar^{2} J(J+1)$
- J_{z}
- $S_{z}^{(n)}$
- $S_{z}^{(p)}$
(b) (10 pts) In the J, M basis,

$$
\begin{aligned}
& |J=1, M=1\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|J=1, M=-1\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
& |J=1, M=0\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|J=0, M=0\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Write the Hamiltonian as a 4×4 matrix.
(c) (5 pts) Find the eigen-energies of the Hamiltonian.

Solution.

(a) Relevant Equations

$$
\begin{gathered}
V_{s s}=\alpha S_{n} \cdot S_{p} \\
V_{B}=-\left(\mu_{n} S_{n}+\mu_{p} S_{p}\right) \cdot \vec{B}
\end{gathered}
$$

Commutation Relations

$$
\begin{gathered}
{\left[|J|^{2}, J_{z}\right]=0} \\
{\left[|J|^{2},\left|S_{n}\right|^{2}\right]=0} \\
{\left[|J|^{2},\left|S_{p}\right|^{2}\right]=0} \\
{\left[|J|^{2}, S_{z}^{(n)}\right] \neq 0} \\
{\left[|J|^{2}, S_{z}^{(p)}\right] \neq 0} \\
{\left[J_{z}, S_{z}^{(n)}\right]=0} \\
{\left[J_{z}, S_{z}^{(p)}\right]=0} \\
{\left[S_{z}^{(n)}, S_{z}^{(p)}\right]=0}
\end{gathered}
$$

Check $|J|^{2}$

$$
\begin{gathered}
{\left[|J|^{2}, V_{s s}\right]=\left[|J|^{2},|J|^{2}-\left|S_{n}\right|^{2}-\left|S_{p}\right|^{2}\right]=0} \\
{\left[|J|^{2}, V_{B}\right]=\left[|J|^{2}, S_{n}+S_{p}\right] \neq 0}
\end{gathered}
$$

$|J|^{2}$ doesn't commute.

Check J_{z}

$$
\begin{gathered}
{\left[J_{z}, V_{s s}\right]=\left[J_{z},|J|^{2}-\left|S_{n}\right|^{2}-\left|S_{p}\right|^{2}\right]=0} \\
{\left[J_{z}, V_{B}\right]=\left[J_{z}, S_{n}+S_{p}\right]=0}
\end{gathered}
$$

J_{z} commutes.
Check $S_{n}^{(z)}$

$$
\begin{gathered}
{\left[S_{z}^{(n)}, V_{s s}\right]=\left[S_{z}^{(n)},|J|^{2}-\left|S_{n}\right|^{2}-\left|S_{p}\right|^{2}\right] \neq 0} \\
{\left[S_{z}^{(n)}, V_{B}\right]=\left[S_{z}^{(n)}, S_{n}+S_{p}\right]=0}
\end{gathered}
$$

$S_{z}^{(n)}$ doesn't commute.
Check $S_{p}^{(z)}$

$$
\begin{gathered}
{\left[S_{z}^{(p)}, V_{s s}\right]=\left[S_{z}^{(p)},|J|^{2}-\left|S_{n}\right|^{2}-\left|S_{p}\right|^{2}\right] \neq 0} \\
{\left[S_{z}^{(p)}, V_{B}\right]=\left[S_{z}^{(p)}, S_{n}+S_{p}\right]=0}
\end{gathered}
$$

$S_{z}^{(p)}$ doesn't commute.

Only J_{z} commutes with the full Hamiltonian.

(b) First, we have a spin-spin interaction between a neutron ($s_{n}=\frac{1}{2}$) and a proton ($s_{p}=\frac{1}{2}$) in the ground state of a harmonic oscillator. $(\ell=0)$ Since this interaction goes like $\vec{S}_{n} \cdot \vec{S}_{p}$, we know that there will only be J dependence, so $V_{s s}$ will be diagonal in the J, M basis.

$$
\vec{S}_{n} \cdot \vec{S}_{p}=\frac{1}{2}\left(\vec{J}^{2}-\vec{S}_{n}^{2}-\vec{S}_{p}^{2}\right)
$$

$$
\langle J, M| V_{s s}\left|J^{\prime}, M^{\prime}\right\rangle=\delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \frac{\alpha \hbar^{2}}{2}\left(J(J+1)-s_{n}\left(s_{n}+1\right)-s_{p}\left(s_{p}+1\right)\right)
$$

Since we are only dependent on J, we have

$$
\begin{gathered}
J=1 \longrightarrow \frac{\alpha \hbar^{2}}{2}\left(2-\frac{3}{2}\right)=\frac{\alpha \hbar^{2}}{4} \\
J=0 \longrightarrow \frac{\alpha \hbar^{2}}{2}\left(0-\frac{3}{2}\right)=-\frac{3 \alpha \hbar^{2}}{4}
\end{gathered}
$$

Thus, the 4×4 matrix, $V_{s s}$ reads:

$$
V_{s s}=\frac{\alpha \hbar^{2}}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

Next we have

$$
V_{B}=-\left(\mu_{n} \vec{S}_{n}+\mu_{p} \vec{S}_{p}\right) \cdot \vec{B}
$$

Since V_{b} goes like $\vec{S}_{n}+\vec{S}_{p}$, we know that it will not be diagonal in the J, M basis, but rather in the m_{n}, m_{p} basis. So in order to write V_{b}, we must rewrite each of the J, M states in the m_{n}, m_{p} basis.

Start at the top, where $J, M=s_{n}+s_{p}=1$, and $m_{p}=s_{p}, m_{n}=s_{n}$. We know there will only be one $\left|m_{n}, m_{p}\right\rangle$ state with $M=s_{n}+s_{p}$.

$$
|J=1, M=1\rangle=\left|m_{n}=1 / 2, m_{p}=1 / 2\right\rangle
$$

Similarly for $M=-1$, there will only be one corresponding $\left|m_{n}, m_{p}\right\rangle$ state,

$$
|J=1, M=-1\rangle=\left|m_{n}=-1 / 2, m_{p}=-1 / 2\right\rangle
$$

Now applying the lowering operator to $|J=1, M=1\rangle$, we get coefficients for the state with the same $J=1$, but $M=s_{n}+s_{p}-1$.

$$
\begin{gathered}
J_{-}|J=1, M=1\rangle=\left(S_{n}^{-}+S_{p}^{-}\right)\left|m_{n}=1 / 2, m_{p}=1 / 2\right\rangle \\
|J=1, M=0\rangle=\frac{1}{\sqrt{2}}\left(\left|m_{n}=-1 / 2, m_{p}=1 / 2\right\rangle+\left|m_{n}=1 / 2, m_{p}=-1 / 2\right\rangle\right)
\end{gathered}
$$

Since there are two $\left|m_{n}, m_{p}\right\rangle$ states corresponding to $|J=1, M=0\rangle$, there has to be another state in the J, M basis that corresponds with the same two $\left|m_{n}, m_{p}\right\rangle$ states, but orthogonal to the state above. We do this simply by making one of the coefficients negative.

$$
|J=0, M=0\rangle=\frac{1}{\sqrt{2}}\left(\left|m_{n}=-1 / 2, m_{p}=1 / 2\right\rangle-\left|m_{n}=1 / 2, m_{p}=-1 / 2\right\rangle\right)
$$

Note that the coefficients also could have been calculated using the fact that $J=\left|s_{n} \pm s_{p}\right|$ and $M=m_{n}+m_{p} \leq J$. The latter method is feasible for this problem since the system is in the ground state of a harmonic oscillator $(\ell=0)$, giving only four total states. For a system with larger ℓ, it would be best to use the raising and lowering operators to calculate coefficients.

In the m_{n}, m_{p} basis, the matrix elements for V_{b} go like

$$
\left\langle m_{p}, m_{n}\right| V_{B}\left|m_{p}^{\prime}, m_{n}^{\prime}\right\rangle=-\delta_{m_{p}, m_{p}^{\prime}} \delta_{m_{n}, m_{n}^{\prime}} B \hbar\left(\mu_{p} m_{p}+\mu_{n} m_{n}\right)
$$

Now, calculate the diagonal elements in the new basis:

$$
\begin{gathered}
\langle J=1, M=1| V_{B}|J=1, M=1\rangle=\frac{-B \hbar}{2}\left(\mu_{p}+\mu_{n}\right) \\
\langle J=1, M=-1| V_{B}|J=1, M=-1\rangle=\frac{B \hbar}{2}\left(\mu_{p}+\mu_{n}\right)
\end{gathered}
$$

It can be seen that

$$
\langle J=1, M=0| V_{B}|J=1, M=0\rangle=0
$$

Similarly for

$$
\langle J=0, M=0| V_{B}|J=0, M=0\rangle=0
$$

We need to look at the off diagonal elements. Note that there will only be overlap when $M=M^{\prime}$.

$$
\begin{gathered}
\langle J=1, M=0| V_{B}|J=0, M=0\rangle=\frac{B \hbar}{2}\left(\mu_{p}-\mu_{n}\right) \\
\langle J=0, M=0| V_{B}|J=1, M=0\rangle=-\frac{B \hbar}{2}\left(\mu_{p}-\mu_{n}\right)
\end{gathered}
$$

Putting it all together

$$
V_{B}=-\frac{B \hbar}{2}\left(\begin{array}{cccc}
\left(\mu_{p}+\mu_{n}\right) & 0 & 0 & 0 \\
0 & \left(-\mu_{p}-\mu_{n}\right) & 0 & 0 \\
0 & 0 & 0 & \left(\mu_{p}-\mu_{n}\right) \\
0 & 0 & \left(\mu_{p}-\mu_{n}\right) & 0
\end{array}\right)
$$

Now we can write our complete 4×4 Hamiltonian,
$H=V_{s s}+V_{B}=\left(\begin{array}{cccc}\frac{\alpha \hbar^{2}}{4}-\frac{\hbar B}{2}\left(\mu_{n}+\mu_{p}\right) & 0 & 0 & 0 \\ 0 & \frac{\alpha \hbar^{2}}{4}+\frac{\hbar B}{2}\left(\mu_{n}+\mu_{p}\right) & 0 & 0 \\ 0 & 0 & \frac{\alpha \hbar^{2}}{4} & -\frac{\hbar B}{2}\left(\mu_{p}-\mu_{n}\right) \\ 0 & 0 & -\frac{\hbar B}{2}\left(\mu_{p}-\mu_{n}\right) & -\frac{3 \alpha \hbar^{2}}{4}\end{array}\right)$
(c) We can read off the first two eigen-energies since they are diagonal in the Hamiltonian.

$$
\epsilon_{1}=\frac{\alpha \hbar^{2}}{4}-\frac{\hbar B}{2}\left(\mu_{n}+\mu_{p}\right)
$$

$$
\epsilon_{2}=\frac{\alpha \hbar^{2}}{4}+\frac{\hbar B}{2}\left(\mu_{n}+\mu_{p}\right)
$$

We can calculate the remaining two eigen-energies by looking at the sub- 2×2 matrix and writing it in terms of Pauli sigma matrices.

$$
H_{2 \times 2}=-\frac{\alpha \hbar^{2}}{4} \mathbb{I}+\frac{\alpha \hbar^{2}}{2} \sigma_{z}-\frac{\hbar B}{2}\left(\mu_{p}-\mu_{n}\right) \sigma_{x}
$$

Now we get the final two eigen-energies.

$$
\epsilon_{3,4}=-\frac{\alpha \hbar^{2}}{4} \pm \sqrt{\left(\frac{\hbar^{2} \alpha}{2}\right)^{2}+\left(\frac{\hbar B}{2}\right)^{2}\left(\mu_{p}-\mu_{n}\right)^{2}}
$$

