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Chapter 4 Exam Prep

Adding Angular Momentum A neutron and proton occupy the ground state of
a harmonic oscillator. The particles then feel two additional sources of interaction.
First, they have a spin-spin interation,

Vss = αSn · Sp,

and secondly, they experience an external magnetic field

VB = −(µnSn + µpSp) · B⃗

Letting J and M reference the total angular momentum and its projection, and
letting mn and ms reference the projections of the neutron and protons spins,

(a) (10 pts) Circle the operators that commute with the Hamiltonian

• The magnitude of the total angular momentum, |J⃗2| = ℏ2J(J + 1)

• Jz

• S
(n)
z

• S
(p)
z

(b) (10 pts) In the J,M basis,

|J = 1,M = 1⟩ =


1
0
0
0

 , |J = 1,M = −1⟩ =


0
1
0
0

 ,

|J = 1,M = 0⟩ =


0
0
1
0

 , |J = 0,M = 0⟩ =


0
0
0
1

 .

Write the Hamiltonian as a 4× 4 matrix.

(c) (5 pts) Find the eigen-energies of the Hamiltonian.

Solution.
(a) Relevant Equations

Vss = αSn · Sp

VB = −(µnSn + µpSp) · B⃗
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Commutation Relations
[|J |2, Jz] = 0

[|J |2, |Sn|2] = 0

[|J |2, |Sp|2] = 0

[|J |2, S(n)
z ] ̸= 0

[|J |2, S(p)
z ] ̸= 0

[Jz, S
(n)
z ] = 0

[Jz, S
(p)
z ] = 0

[S(n)
z , S(p)

z ] = 0

Check |J |2
[|J |2, Vss] = [|J |2, |J |2 − |Sn|2 − |Sp|2] = 0

[|J |2, VB] = [|J |2, Sn + Sp] ̸= 0

|J |2 doesn’t commute.

Check Jz
[Jz, Vss] = [Jz, |J |2 − |Sn|2 − |Sp|2] = 0

[Jz, VB] = [Jz, Sn + Sp] = 0

Jz commutes.

Check S
(z)
n

[S(n)
z , Vss] = [S(n)

z , |J |2 − |Sn|2 − |Sp|2] ̸= 0

[S(n)
z , VB] = [S(n)

z , Sn + Sp] = 0

S
(n)
z doesn’t commute.

Check S
(z)
p

[S(p)
z , Vss] = [S(p)

z , |J |2 − |Sn|2 − |Sp|2] ̸= 0

[S(p)
z , VB] = [S(p)

z , Sn + Sp] = 0

S
(p)
z doesn’t commute.

Only Jz commutes with the full Hamiltonian.

(b) First, we have a spin-spin interaction between a neutron (sn = 1
2
) and a proton (sp =

1
2
)

in the ground state of a harmonic oscillator. (ℓ = 0) Since this interaction goes like S⃗n · S⃗p,
we know that there will only be J dependence, so Vss will be diagonal in the J,M basis.

S⃗n · S⃗p =
1

2

(
J⃗2 − S⃗2

n − S⃗2
p

)
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⟨J,M |Vss |J ′,M ′⟩ = δJ,J ′δM,M ′
αℏ2

2
(J(J + 1)− sn(sn + 1)− sp(sp + 1))

Since we are only dependent on J , we have

J = 1 −→ αℏ2

2

(
2− 3

2

)
=

αℏ2

4

J = 0 −→ αℏ2

2

(
0− 3

2

)
= −3αℏ2

4

Thus, the 4× 4 matrix, Vss reads:

Vss =
αℏ2

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3


Next we have

VB = −(µnS⃗n + µpS⃗p) · B⃗.

Since Vb goes like S⃗n+ S⃗p, we know that it will not be diagonal in the J,M basis, but rather
in the mn,mp basis. So in order to write Vb, we must rewrite each of the J,M states in the
mn,mp basis.

Start at the top, where J,M = sn + sp = 1, and mp = sp,mn = sn. We know there
will only be one |mn,mp⟩ state with M = sn + sp.

|J = 1,M = 1⟩ = |mn = 1/2,mp = 1/2⟩

Similarly for M = −1, there will only be one corresponding |mn,mp⟩ state,

|J = 1,M = −1⟩ = |mn = −1/2,mp = −1/2⟩

Now applying the lowering operator to |J = 1,M = 1⟩, we get coefficients for the state with
the same J = 1, but M = sn + sp − 1.

J− |J = 1,M = 1⟩ =
(
S−
n + S−

p

)
|mn = 1/2,mp = 1/2⟩

|J = 1,M = 0⟩ = 1√
2
(|mn = −1/2,mp = 1/2⟩+ |mn = 1/2,mp = −1/2⟩)

Since there are two |mn,mp⟩ states corresponding to |J = 1,M = 0⟩, there has to be another
state in the J,M basis that corresponds with the same two |mn,mp⟩ states, but orthogonal
to the state above. We do this simply by making one of the coefficients negative.

|J = 0,M = 0⟩ = 1√
2
(|mn = −1/2,mp = 1/2⟩ − |mn = 1/2,mp = −1/2⟩)
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Note that the coefficients also could have been calculated using the fact that J = |sn ± sp|
and M = mn + mp ≤ J . The latter method is feasible for this problem since the system
is in the ground state of a harmonic oscillator (ℓ = 0), giving only four total states. For a
system with larger ℓ, it would be best to use the raising and lowering operators to calculate
coefficients.

In the mn,mp basis, the matrix elements for Vb go like

⟨mp,mn|VB |m′
p,m

′
n⟩ = −δmp,m′

p
δmn,m′

n
Bℏ(µpmp + µnmn)

Now, calculate the diagonal elements in the new basis:

⟨J = 1,M = 1|VB |J = 1,M = 1⟩ = −Bℏ
2

(µp + µn)

⟨J = 1,M = −1|VB |J = 1,M = −1⟩ = Bℏ
2

(µp + µn)

It can be seen that
⟨J = 1,M = 0|VB |J = 1,M = 0⟩ = 0

Similarly for
⟨J = 0,M = 0|VB |J = 0,M = 0⟩ = 0

We need to look at the off diagonal elements. Note that there will only be overlap when
M = M ′.

⟨J = 1,M = 0|VB |J = 0,M = 0⟩ = Bℏ
2

(µp − µn)

⟨J = 0,M = 0|VB |J = 1,M = 0⟩ = −Bℏ
2

(µp − µn)

Putting it all together

VB = −Bℏ
2


(µp + µn) 0 0 0

0 (−µp − µn) 0 0
0 0 0 (µp − µn)
0 0 (µp − µn) 0


Now we can write our complete 4× 4 Hamiltonian,

H = Vss+VB =


αℏ2
4

− ℏB
2
(µn + µp) 0 0 0

0 αℏ2
4

+ ℏB
2
(µn + µp) 0 0

0 0 αℏ2
4

−ℏB
2
(µp − µn)

0 0 −ℏB
2
(µp − µn) −3αℏ2

4


(c) We can read off the first two eigen-energies since they are diagonal in the Hamiltonian.

ϵ1 =
αℏ2

4
− ℏB

2
(µn + µp)
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ϵ2 =
αℏ2

4
+

ℏB
2

(µn + µp)

We can calculate the remaining two eigen-energies by looking at the sub-2 × 2 matrix and
writing it in terms of Pauli sigma matrices.

H2×2 = −αℏ2

4
I+

αℏ2

2
σz −

ℏB
2

(µp − µn)σx

Now we get the final two eigen-energies.

ϵ3,4 = −αℏ2

4
±

√(
ℏ2α
2

)2

+

(
ℏB
2

)2

(µp − µn)
2
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