Chapter 7 Problem:
 Differential Solid Angle and Structure Function

Patrick Cook

Alex Adams
Alex Loomis
PHY 851 Fall 2021
Dr. Scott Pratt
December 10, 2021

Problem Suppose that the differential scattering angle $\frac{d \sigma}{d \Omega}$ for a point-like scatterer is α, independent of scattering angle. Now suppose we have $N^{3} \gg 1$ of these scatterers arranged in a 3 -dimensional cubic lattice with spacing a and side length $N a$. Consider a high energy plane wave incident with wavevector $\overrightarrow{k_{i}}=k \hat{z}$. Define $\vec{q} \equiv \overrightarrow{k_{i}}-\overrightarrow{k_{f}}=$ $k\left[\left(1-\cos \theta_{s}\right) \hat{z}-\sin \theta_{s} \cos \phi_{s} \hat{x}-\sin \theta_{s} \sin \phi_{s} \hat{y}\right]$ where θ_{s} and ϕ_{s} are the scattering angles.
a) What is $\frac{d \sigma}{d \Omega}$ in terms of α, N, k, a, and \vec{q} ?
b) Find the condition for \vec{q} that maximizes the differential cross section.
c) In the limit that $N \rightarrow \infty$, find the condition for \vec{q} that minimizes $\frac{d \sigma}{d \Omega}$.
d) Repeat parts a-c but with a lattice spacing of a (and side length of $N a$) in the \hat{x} and \hat{y} directions and a spacing of $2 a$ (and side length of $2 N a$) in the \hat{z} direction.

Relevant Equations

$$
\begin{align*}
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {point }} \tilde{S}(\vec{q}) \tag{1}\\
& \tilde{S}(\vec{q})=\frac{1}{N}\left|\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}}\right|^{2} \tag{2}
\end{align*}
$$

Solution

a) We use Eq. 2 to find the structure function,

$$
\begin{aligned}
\sum_{\vec{a}} e^{i \vec{q} \cdot \vec{a}} & =\sum_{n_{x}, n_{y}, n_{z}=0}^{N} e^{i \vec{q} \cdot a\left(n_{x} \hat{x}+n_{y} \hat{y}+n_{z} \hat{z}\right)} \\
& =\sum_{n_{x}, n_{y}, n_{z}=0}^{N} e^{i q_{x} a n_{x}} e^{i q_{y} a n_{y}} e^{i q_{z} a n_{z}} \\
& =\prod_{\hat{u} \in\{\hat{x}, \hat{y}, \hat{z}\}} \sum_{n=0}^{N}\left(e^{i q_{u} a}\right)^{n} \\
\Longrightarrow \tilde{S}(\vec{q}) & =\left.\frac{1}{N^{3}} \prod_{\hat{u} \in\{\hat{x}, \hat{y}, \hat{z}\}} \sum_{n=0}^{N}\left(e^{i q_{u} a}\right)^{n}\right|^{2}
\end{aligned}
$$

Then we plug this into Eq. 1.

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha}{N^{3}}\left|\prod_{\hat{u} \in\{\hat{x}, \hat{y}, \hat{z}\}} \sum_{n=0}^{N}\left(e^{i q_{u} a}\right)^{n}\right|^{2}
$$

b) To maximize $\frac{d \sigma}{d \Omega}$ we note that the maximum value of each term in the summations is 1 , which occurs when $q_{u} a=2 j \pi$ where $j \in \mathbb{Z}$. So, the maximum occurs when this is true for each \hat{u},

$$
\left\{\begin{array}{l}
q_{x} a=2 r \pi \\
q_{y} a=2 s \pi \text { where } r, s, t \in \mathbb{Z} \\
q_{z} a=2 t \pi
\end{array}\right.
$$

c) To minimize $\frac{d \sigma}{d \Omega}$ we note that each individual term in the summations must have $\left|\left(e^{i q_{u} a}\right)^{n}\right|^{2}=1$. But, the phases of each term will only align when $e^{i q_{u} a}=1$, otherwise the $(\cdot)^{n}$ will rotate the phase by $q_{u} a$ for each successive n. This heuristic explanation shows that the sum will always be bounded (but may not necessarily converge) so long as $e^{i q_{u} a} \neq 1$ for some q_{u}. Therefore, as $N \rightarrow \infty, \frac{d \sigma}{d \Omega} \rightarrow 0$ when

$$
\left\{\begin{array}{l}
q_{x} a \neq 2 r \pi \\
q_{y} a \neq 2 s \pi \text { for all } r, s, t \in \mathbb{Z} \\
q_{z} a \neq 2 t \pi
\end{array}\right.
$$

d) It is not necessary to work the entire problem again. We can see that replacing the spacing on the \hat{z} axis is equivalent to replacing n_{z} with $2 n_{z}$, and as such all q_{z} are replaced with $2 q_{z}$ in the preceding parts.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{d \sigma}{d \Omega}=\frac{\alpha}{N^{3}}\left|\sum_{n=0}^{N}\left(e^{i q_{x} a}\right)^{n} \sum_{n=0}^{N}\left(e^{i q_{y} a}\right)^{n} \sum_{n=0}^{N}\left(e^{2 i q_{z} a}\right)^{n}\right|^{2} \\
\text { Maximized when }\left\{\begin{array}{l}
q_{x} a=2 r \pi \\
q_{y} a=2 s \pi \\
q_{z} a=t \pi
\end{array}\right. \\
\text { where } r, s, t \in \mathbb{Z}
\end{array} \\
& \text { Minimized when }\left\{\begin{array}{l}
q_{x} a \neq 2 r \pi \\
q_{y} a \neq 2 s \pi \text { for all } r, s, t \in \mathbb{Z} \\
q_{z} a \neq t \pi
\end{array}\right.
\end{aligned}
$$

