Chapter 7 Problem: Differential Solid Angle and Structure Function

Patrick Cook

Alex Adams

Alex Loomis

PHY 851 Fall 2021 Dr. Scott Pratt

December 10, 2021

Problem Suppose that the differential scattering angle $\frac{d\sigma}{d\Omega}$ for a point-like scatterer is α , independent of scattering angle. Now suppose we have $N^3 \gg 1$ of these scatterers arranged in a 3-dimensional cubic lattice with spacing a and side length Na. Consider a high energy plane wave incident with wavevector $\vec{k_i} = k\hat{z}$. Define $\vec{q} \equiv \vec{k_i} - \vec{k_f} = k\left[(1 - \cos\theta_s)\hat{z} - \sin\theta_s\cos\phi_s\hat{x} - \sin\theta_s\sin\phi_s\hat{y}\right]$ where θ_s and ϕ_s are the scattering angles.

- **a)** What is $\frac{d\sigma}{d\Omega}$ in terms of α , N, k, a, and \vec{q} ?
- b) Find the condition for \vec{q} that maximizes the differential cross section.
- c) In the limit that $N \to \infty$, find the condition for \vec{q} that minimizes $\frac{d\sigma}{d\Omega}$.

d) Repeat parts **a**–**c** but with a lattice spacing of a (and side length of Na) in the \hat{x} and \hat{y} directions and a spacing of 2a (and side length of 2Na) in the \hat{z} direction.

Relevant Equations

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{point}} \tilde{S}(\vec{q}) \tag{1}$$

$$\tilde{S}(\vec{q}) = \frac{1}{N} \left| \sum_{\vec{a}} e^{i\vec{q}\cdot\vec{a}} \right|^2 \tag{2}$$

Solution

a) We use Eq. 2 to find the structure function,

$$\sum_{\vec{a}} e^{i\vec{q}\cdot\vec{a}} = \sum_{n_x,n_y,n_z=0}^{N} e^{i\vec{q}\cdot a(n_x\hat{x}+n_y\hat{y}+n_z\hat{z})}$$
$$= \sum_{n_x,n_y,n_z=0}^{N} e^{iq_xan_x} e^{iq_yan_y} e^{iq_zan_z}$$
$$= \prod_{\hat{u}\in\{\hat{x},\hat{y},\hat{z}\}} \sum_{n=0}^{N} (e^{iq_ua})^n$$
$$\implies \tilde{S}(\vec{q}) = \frac{1}{N^3} \left| \prod_{\hat{u}\in\{\hat{x},\hat{y},\hat{z}\}} \sum_{n=0}^{N} (e^{iq_ua})^n \right|^2$$

Then we plug this into Eq. 1.

$$\left| \frac{d\sigma}{d\Omega} = \frac{\alpha}{N^3} \left| \prod_{\hat{u} \in \{\hat{x}, \hat{y}, \hat{z}\}} \sum_{n=0}^N \left(e^{iq_u a} \right)^n \right|^2$$

b) To maximize $\frac{d\sigma}{d\Omega}$ we note that the maximum value of each term in the summations is 1, which occurs when $q_u a = 2j\pi$ where $j \in \mathbb{Z}$. So, the maximum occurs when this is true for each \hat{u} ,

$$\begin{cases} q_x a = 2r\pi \\ q_y a = 2s\pi \text{ where } r, s, t \in \mathbb{Z} \\ q_z a = 2t\pi \end{cases}$$

c) To minimize $\frac{d\sigma}{d\Omega}$ we note that each individual term in the summations must have $|(e^{iq_u a})^n|^2 = 1$. But, the phases of each term will only align when $e^{iq_u a} = 1$, otherwise the $(\cdot)^n$ will rotate the phase by $q_u a$ for each successive n. This heuristic explanation shows that the sum will always be bounded (but may not necessarily converge) so long as $e^{iq_u a} \neq 1$ for some q_u . Therefore, as $N \to \infty$, $\frac{d\sigma}{d\Omega} \to 0$ when

$$\begin{cases} q_x a \neq 2r\pi \\ q_y a \neq 2s\pi \text{ for all } r, s, t \in \mathbb{Z} \\ q_z a \neq 2t\pi \end{cases}$$

d) It is not necessary to work the entire problem again. We can see that replacing the spacing on the \hat{z} axis is equivalent to replacing n_z with $2n_z$, and as such all q_z are replaced with $2q_z$ in the preceding parts.

$$\frac{d\sigma}{d\Omega} = \frac{\alpha}{N^3} \left| \sum_{n=0}^N \left(e^{iq_x a} \right)^n \sum_{n=0}^N \left(e^{iq_y a} \right)^n \sum_{n=0}^N \left(e^{2iq_z a} \right)^n \right|^2$$

Maximized when
$$\begin{cases} q_x a = 2r\pi\\ q_y a = 2s\pi \text{ where } r, s, t \in \mathbb{Z}\\ q_z a = t\pi \end{cases}$$

Minimized when
$$\begin{cases} q_x a \neq 2r\pi\\ q_y a \neq 2s\pi \text{ for all } r, s, t \in \mathbb{Z}\\ q_z a \neq t\pi \end{cases}$$