Problem 4.8a. Assuming that the Hamiltonian is invariant under time reversal, prove that the wave function for a spinless nondegenerate system at any given instant of time can always be chosen to be real.

Call $|n\rangle$ the eigenstates of H with energy E_{n}. Then using that H is invariant under Θ,

$$
H \Theta|n\rangle=\Theta H|n\rangle=E_{n} \Theta|n\rangle
$$

meaning that the energy of $\Theta|n\rangle$ is E_{n}. We assumed that the system is nondegenerate, so this means $\Theta|n\rangle$ and $|n\rangle$ are the same state, differing by at most a phase independent of \mathbf{r}. If $\Theta|n\rangle=e^{i \delta}|n\rangle$, we can redefine the energy eigenstates $|\tilde{n}\rangle \equiv e^{i \delta / 2}|n\rangle$ so that

$$
\begin{aligned}
\Theta|\tilde{n}\rangle & =\Theta\left(e^{i \delta / 2}|n\rangle\right) \\
& =e^{-i \delta / 2} e^{i \delta}|n\rangle \\
& =|\tilde{n}\rangle
\end{aligned}
$$

Recall that

$$
\begin{gathered}
\Theta \psi_{\tilde{n}}(\mathbf{r})=\psi_{\tilde{n}}^{*}(\mathbf{r}) \\
\Rightarrow \Theta\langle\mathbf{r} \mid \tilde{n}\rangle=\langle\mathbf{r} \mid \tilde{n}\rangle^{*},
\end{gathered}
$$

but we just showed that

$$
\Theta\langle\mathbf{r} \mid \tilde{n}\rangle=\langle\mathbf{r} \mid \tilde{n}\rangle
$$

so

$$
\langle\mathbf{r} \mid \tilde{n}\rangle=\langle\mathbf{r} \mid \tilde{n}\rangle^{*},
$$

therefore using this phase convention $\psi_{\tilde{n}}(\mathbf{r})$ is real.
Problem 4.8b. The wave function for a plane-wave state at $t=0$ is given by a complex function $e^{i \mathbf{p} \cdot \mathbf{r} / \hbar}$. Why does this not violate time-reversal invariance?

The statement in (a) doesn't apply here because $e^{i \mathbf{p} \cdot \mathbf{r} / \hbar}$ is a degenerate state with $e^{-i \mathbf{p} \cdot \mathbf{r} / \hbar}$.

Problem 4.9. Let $\phi(\mathbf{p})$ be the momentum-space wave function for state $|\alpha\rangle$, that is, $\phi(\mathbf{p})=\langle\mathbf{p} \mid \alpha\rangle$. Is the momentum-space wave function for the timereversed state $\Theta|\alpha\rangle$ given by $\phi(\mathbf{p}), \phi(-\mathbf{p}), \phi^{*}(\mathbf{p})$, or $\phi^{*}(-\mathbf{p})$? Justify your answer.

First a few background tidbits: From class notes, we know $\Theta \mathbf{P} \Theta^{-1}=-\mathbf{P}$, in other words, \mathbf{P} is odd under time reversal. When we apply this to a state,

$$
\mathbf{P} \Theta|\mathbf{p}\rangle=-\Theta \mathbf{P} \Theta^{-1} \Theta|\mathbf{p}\rangle=(-\mathbf{p}) \Theta|\mathbf{p}\rangle
$$

We see that $\Theta|\mathbf{p}\rangle$ is the momentum eigenstate corresponding to eigenvalue $-\mathbf{p}$. Now on to solving the problem at hand:

We express α as

$$
|\alpha\rangle=\int\langle\mathbf{p} \mid \alpha\rangle^{*}|\mathbf{p}\rangle d^{3} p
$$

So then let us write $\Theta|\alpha\rangle$ as

$$
\begin{aligned}
\Theta|\alpha\rangle & =\int \Theta|\mathbf{p}\rangle\langle\mathbf{p} \mid \alpha\rangle^{*} d^{3} p \\
& =\int|-\mathbf{p}\rangle\langle\mathbf{p} \mid \alpha\rangle d^{3} p
\end{aligned}
$$

Theres nothing to keep us from moving the minus sign:

$$
\begin{aligned}
\Theta|\alpha\rangle & =\int|\mathbf{p}\rangle\langle-\mathbf{p} \mid \alpha\rangle^{*} d^{3} p \\
& =\int \phi^{*}(-\mathbf{p})|\mathbf{p}\rangle d^{3} p
\end{aligned}
$$

So we see that

$$
\Theta \phi(\mathbf{p})=\phi^{*}(-\mathbf{p})
$$

Does this make sense? Yes. Because in momentum-space time reversal means motion reversal; its intuitive that \mathbf{p} picks up the negative sign, and we know from the class notes that the time reversal operator involves taking the complex conjugate, as we see in our answer.

