Problem 4.8a. Assuming that the Hamiltonian is invariant under time reversal, prove that the wave function for a spinless nondegenerate system at any given instant of time can always be chosen to be real.

Call $|n\rangle$ the eigenstates of H with energy E_n . Then using that H is invariant under Θ ,

$$H\Theta \left| n \right\rangle = \Theta H \left| n \right\rangle = E_n \Theta \left| n \right\rangle,$$

meaning that the energy of $\Theta |n\rangle$ is E_n . We assumed that the system is nondegenerate, so this means $\Theta |n\rangle$ and $|n\rangle$ are the same state, differing by at most a phase independent of **r**. If $\Theta |n\rangle = e^{i\delta} |n\rangle$, we can redefine the energy eigenstates $|\tilde{n}\rangle \equiv e^{i\delta/2} |n\rangle$ so that

$$\begin{split} \Theta \left| \tilde{n} \right\rangle &= \Theta(e^{i\delta/2} \left| n \right\rangle) \\ &= e^{-i\delta/2} e^{i\delta} \left| n \right\rangle \\ &= \left| \tilde{n} \right\rangle. \end{split}$$

Recall that

$$\Theta \psi_{\tilde{n}}(\mathbf{r}) = \psi_{\tilde{n}}^{*}(\mathbf{r})$$
$$\Rightarrow \Theta \langle \mathbf{r} | \tilde{n} \rangle = \langle \mathbf{r} | \tilde{n} \rangle^{*},$$

but we just showed that

$$\Theta \left< \mathbf{r} | \tilde{n} \right> = \left< \mathbf{r} | \tilde{n} \right>,$$

 \mathbf{so}

$$\langle \mathbf{r} | \tilde{n} \rangle = \langle \mathbf{r} | \tilde{n} \rangle^*,$$

therefore using this phase convention $\psi_{\tilde{n}}(\mathbf{r})$ is real.

Problem 4.8b. The wave function for a plane-wave state at t = 0 is given by a complex function $e^{i\mathbf{p}\cdot\mathbf{r}/\hbar}$. Why does this not violate time-reversal invariance?

The statement in (a) doesn't apply here because $e^{i\mathbf{p}\cdot\mathbf{r}/\hbar}$ is a degenerate state with $e^{-i\mathbf{p}\cdot\mathbf{r}/\hbar}$.

Problem 4.9. Let $\phi(\mathbf{p})$ be the momentum-space wave function for state $|\alpha\rangle$, that is, $\phi(\mathbf{p}) = \langle \mathbf{p} | \alpha \rangle$. Is the momentum-space wave function for the time-reversed state $\Theta | \alpha \rangle$ given by $\phi(\mathbf{p}), \phi(-\mathbf{p}), \phi^*(\mathbf{p}), \text{ or } \phi^*(-\mathbf{p})$? Justify your answer.

First a few background tidbits: From class notes, we know $\Theta \mathbf{P} \Theta^{-1} = -\mathbf{P}$, in other words, \mathbf{P} is odd under time reversal. When we apply this to a state,

$$\mathbf{P}\Theta \left| \mathbf{p} \right\rangle = -\Theta \mathbf{P}\Theta^{-1}\Theta \left| \mathbf{p} \right\rangle = (-\mathbf{p})\Theta \left| \mathbf{p} \right\rangle$$

We see that $\Theta |\mathbf{p}\rangle$ is the momentum eigenstate corresponding to eigenvalue $-\mathbf{p}$. Now on to solving the problem at hand:

We express α as

$$|\alpha\rangle = \int \langle \mathbf{p} | \alpha \rangle^* | \mathbf{p} \rangle d^3 p.$$

So then let us write $\Theta \left| \alpha \right\rangle$ as

$$\begin{split} \Theta \left| \alpha \right\rangle &= \int \Theta \left| \mathbf{p} \right\rangle \left\langle \mathbf{p} \right| \alpha \right\rangle^* d^3 p \\ &= \int \left| -\mathbf{p} \right\rangle \left\langle \mathbf{p} \right| \alpha \right\rangle d^3 p \end{split}$$

Theres nothing to keep us from moving the minus sign:

$$egin{aligned} \Theta \left| lpha
ight
angle &= \int \left| \mathbf{p}
ight
angle \left\langle -\mathbf{p}
ight| lpha
ight
angle^{st} d^{3}p \ &= \int \phi^{st}(-\mathbf{p}) \left| \mathbf{p}
ight
angle d^{3}p, \end{aligned}$$

So we see that

$$\Theta\phi(\mathbf{p}) = \phi^*(-\mathbf{p}).$$

Does this make sense? Yes. Because in momentum-space time reversal means motion reversal; its intuitive that \mathbf{p} picks up the negative sign, and we know from the class notes that the time reversal operator involves taking the complex conjugate, as we see in our answer.