
PHY 851/851 1 RELATIVISTIC SHIFT

Question

A particle of mass m and charge e0 feels a weak constant electric field ~E = E0x̂. Additionally,
the particle experiences a constant strong magnetic field ~B = B0ẑ. The magnetic field strength
is greater than the electric field strength, E0 < B0.

Describe a reference frame where either E or B is zero. State the velocity (both magnitude and
direction) of that frame, and describe the fields in that frame.

Solve the solution for the Schrödinger equation in the Lorentz shifted reference frame for t=0.

What would be the properties of the solution in the original reference frame?

1 Relativistic Shift

We start off with an electric field in the x direction Ex and a magnetic field in the z direction Bz.
The equation for field transformations are

E′‖ = E‖

E′⊥ = γ(E⊥ + ~v × B)

B′‖ = B‖

B′⊥ = γ(B⊥ −
1

c2
~v × E)

The electric field is weaker than the magnetic field, so we should use a relativistic shift that
makesE = 0. This can be accomplished quite simply through a lorentz boost in the ŷ direction.

The field transformation equations for a boost in the ŷ direction with a magnetic field in the ẑ
direction are

E′x = γ(Ex + v0Bz)

E′y = Ey

E′z = γEz

All the direction of E are zero, except in the x direction. If we set that to zero,

E′x = 0 = γ(Ex + v0Bz)

⇒ 0 = Ex + v0Bz

v0 =
−Ex

Bz

.

Hence, we can think of this as a particle in a frame moving with velocity −Ex

Bz
plus a circular

motion inside the classical framework.

(Question: What would happen if E » B?)
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PHY 851/851 2 DEFINING THE ELECTROMAGNETIC FOUR-POTENTIAL

Figure 1.1: Classical motion

This lorentz boost changes the magnetic field strength as follows...

B′z = γ(Bz +
1

c2
vyEx)

= γ(Bz −
1

c2
Ex

Bz

Ex)

= γBz

(
1−

(
Ex

Bzc

)2
)

= γBz

(
1− β2

)
B′z =

Bz

γ

The magnetic field is weakened by a factor of γ.

2 Defining the Electromagnetic Four-Potential

(Note, we are now in the lorentz shifted space. I should put primes on all spatial variables,
velocities, and functions dependent on them, but that is annoying to write and read, so just
assume they are there.)
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PHY 851/851 3 SOLVING THE (TIME INDEPENDENT) SCHRÖDINGER EQUATION

We just need to find Φ and ~A. E = −∇Φ− 1
c
∂A
∂t

so Φ will be zero because E = 0 and there is
no time dependence. Defining ~A is trickier, but in this case, not too bad. It just needs to satisfy
~B = ∇× ~A, which, even though I hate to say it, I will do by observation. Bz = ∂

∂x
Ay − ∂

∂y
Ax

so

Φ = 0

~A = −B′z yx̂

(This is not the only correct answer for ~A, I just wanted ~A to have only an x component.)

3 Solving the (Time Independent) Schrödinger Equation

First, let’s define a wavefunction. We can simply use a separation of variables. (Trust me, it will
end up working.)

ψ = φx(x)φy(y)φz(z)

Our Schrödinger equation will end up being the following...

Hψ =
1

2m

(
−i~∇−

e0

c
~A

)2

ψ

=
1

2m

(
−~2(∇ · ∇ψ) +

ie0~
c

(∇ · ~Aψ) +
ie0~
c

( ~A · ∇ψ) +
e20
c2

( ~A · ~Aψ)

)
=

1

2m

(
−~2∇2 +

ie0~
c

(∇ · ~A) + 2
ie0~
c

( ~A · ∇) +
e20
c2

( ~A · ~A)

)
ψ

=
1

2m

(
−~2∂2

x − ~2∂2
y − ~2∂2

z − 2
ie0~
c
B′zy∂x +

e20
c2
B′z

2y2

)
ψ

Now, one can check and see that both [P̂x,H] = 0 and [P̂z,H] = 0, which means we can set
φx = eikxx and φz = eikzz, solutions of a free particle. See if you can figure out why? (Hint,
solve [P̂x, T̂ + V̂ ] = 0)

Now, we can plug in those wave functions and cancel out φx and φz and move on...

Eφy =
−~2

2m
∂2
yφy +

h2k2
z

2m
φy +

1

2m
(~2k2

x +
2~kxeB′0y

c
+
e2B′0y

2

c2
)φy

Eφy =
−~2

2m
∂2
yφy +

h2k2
z

2m
φy +

e20B
′
0
2

2mc2

(~2k2
xc

2

e20B
′
0
2

+
2~kxcy
e0B′0

+ y2

)
φy

If you do some annoying unit analysis, you see that you can add a convenient new argument...

y0 =
−~kxc
e0B′0
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PHY 851/851 4 RETURN TO REFERENCE FRAME

Eφy =
~2k2

z

2m
φy −

~2

2m
∂2
yφy +

e20B
′
0
2

2mc2

(
y′ − y′0

)2
φy

The first term is a free particle moving in the z direction, and the second term a harmonic oscil-
lator in the y dimension. But where is the x direction here? Well, you can see by analyzing the
eigenstate of the P̂x operator.

P̂xψ = (−i~∂x −
e0

c
Ax)ψ

mvx = ~kx +
e0

c
B′0y

′

This results in a circular motion if one solves for the equation of motion. (See lecture notes equa-
tion 3.17) In quantum mechanics however, this better corresponds to a 2D harmonic oscillator.
BUT, our wavefunction’s form only has a 1D harmonic oscillator component. Quantum me-
chanics sure is funky. So, our solvable wave function becomes a plane wave in the z direction
multiplied by a plane wave in the x direction multiplied by a 1D harmonic oscillator in the in
the y direction, centered around a y coordinate that depends on the inital x momentum, with
ω = (e0B

′
0)/(mc). (An interesting system, as the harmonic oscillator is represented purely by

bound states and the free particle exist in a continuum, and the energy is QUANTIZED in the
same way as a 1D harmonic oscillator, even though classically we would expect the system to be
oscillating in a way involving 2 dimensions.

ψ′ = eikz′x
′
eikz′z

′
φn(y′)

E =
~2k2

z

2m
+ ~ω(n+

1

2
)

ω =
e0B

′
0

mc

4 Return to Reference Frame

In the y direction, we will have length contraction because we boosted in the y direction, mak-
ing the harmonic oscillator skinnier. We would also have modify the center of the harmonic
oscillator to move at the velocity we used to Lorentz shift. (Unfortunately, it turns out there is
no simple way to bring a wavefunction back through a Lorentz shift, be we can at least take
estimates on what the new density would look like.)
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