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1 Notes

1.1 From the Beginning...
We begin our review of the famous harmonic oscillator (which can be found in Chapter 2) by
writing down the non-relativistic, time dependent Schrödinger equation.

Ĥ |Ψ(r , t)⟩ = i~
d
dt

|Ψ(r , t)⟩ [1.1]

(
p2

2m
+ V (r)) |Ψ(r , t)⟩ = i~

d
dt

|Ψ(r , t)⟩ [1.2]

We can solve the time independent version of (1.2) by assuming stationary states, allowing
us to use separable solutions for our wave function Ψ(r , t). The derivation of that is outside
of the scope of these notes, but one can readily arrive at the time independent Schrödinger
equation by following the usual steps of transforming a PDE to an ODE, noting that the time
problem is a simple ODE, solving for the time solution, plugging back in, and arriving at the
following time independent functional form of the Schrödinger equation

(
p2

2m
+ V (r)) |Ψ(r)⟩ = E |Ψ(r)⟩ [1.3]

where E is the energy of our eigenstate.

1.2 Solving the TISE
We are now in a position to begin describing properties of the harmonic oscillator. Our
Hamiltonian Ĥ becomes

Ĥ =
P2

2m
+
m!2

2
r̂ [1.4]
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It is important to point out that there are two approaches to solving this, one requiring more
e�ort than the other. The more taxing method would utilize a power series solution, a fair
way of solving a second order di�erential equation (which will require some rearranging and
some intermediate quantities to transform (1.3) to a form in which this method does work)
which leads to Hermite polynomials. Conversely, one can thank the heavens for Dirac and his
solution to this problem. This involves de�ning two operators

a =
√
m!
2~ (x̂ +

i
m!

P̂) a† =
√
m!
2~ (x̂ −

i
m!

P̂) [1.5]

the destruction (lowering) and creation (raising) operators, respectively. As one can sur-
mise by the names given, they raise/lower our eigenstates by integer values (as seen in Scott’s
notes of Ch 2.6). These operators obey the following commutation relations

[a, a†] = aa† − a†a [1.6]

aa† =
m!
2~ (x2 −

i
m!

x̂p̂ +
i
m!

p̂x̂ +
p̂2

m2!2) [1.7]

= x2 +
p̂2

m2!2 −
i
m!

[x̂ , p̂] [1.8]

a†a =
m!
2~ (x2 +

i
m!

x̂p̂ −
i
m!

p̂x̂ +
p̂2

m2!2) [1.9]

= x2 +
p̂2

m2!2 +
i
m!

[x̂ , p̂] [1.10]

[a, a†] =
m!
2~ (x2 +

p̂2

m2!2 −
i
m!

[x̂ , p̂] − (x2 +
p̂2

m2!2 +
i
m!

[x̂ , p̂])) [1.11]

=
m!
2~ (2

−i
m!

[x̂ , p̂]) =
(−2i)i~
2~

= 1 [1.12]

[a, a†] = 1 [1.13]

where we made use of the commutation relation between the position and momentum operator

[x̂i, p̂j] = i~�ij

With this commutation relation, our Hamiltonian is readily written as

Ĥ = (a
†a +

1
2)

~! [1.14]

where a†a is known as the Number operator N̂ for the current state.
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1.3 Behavior of a and a†

The destruction and creation (1.5) operators have the following behavior when acting on an
state together

â |n⟩ =
√
n |n − 1⟩ [1.15]

â† |n⟩ =
√
n + 1 |n + 1⟩ [1.16]

N̂ |n⟩ = a†a |n⟩ = n |n⟩ [1.17]
[1.18]

Thus, if we are given some ground state wave function | (x)⟩ (or any wave function) and we
are asked to �nd the ntℎ wave function, one simply just needs to apply the raising/ lowering
operators repeatedly until arriving at the ntℎ state. It is important to note that the lowering
operator â acting on the ground state |n = 0⟩ will return zero due to the reality that we can’t
go to a state below the ground state. Similarly, we can make the same argument for the raising
operator â† and the highest energy state for a given system. This yields

a |n = 0⟩ = 0 a† |n = M⟩ = 0 [1.19]

where M is some integer representing the highest energy level of a given system. Another
important feature of this system, after being solved for, is the allowed values of our eigen
energies

En = (n +
1
2)

n = 0, 1, 2, ..., M [1.20]

If we have a N dimensional problem, such that our SE has multiple spatial separable solutions,
we can write our solution as

Ψ(x1, x2, ..., xN ) =  1(x1) 2(x2)... N (xN )

where each of these solve their corresponding 1D problem. Each wave function would have
their own energy of

Ei = ~! (ni +
1
2)

[1.21]

To �nd the total energy, one would just simply add the energy for every solution  of our N
dimensional problem which is given by (1.21)

ETot = ∑
i
Ei = ∑

i
~! (ni +

1
2)

[1.22]

where ni represents the principal quantum number for the itℎ solution (wave function)  to
our N dimensional problem. If we had a 3 dimensional problem, our total energy would be

ETot =
3

∑
i=1
Ei =

3

∑
i=1

~! (ni +
1
2)

= ~! (n1 + n2 + n3 +
3
2)

[1.23]
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1.4 Degeneracy in H.O. systems
Last but not least, it is important to talk about degeneracy of a state. When looking for
degeneracy for a N-dimensional problem consisting of harmonic oscillators, we are really just
looking to �nd the multiplicity of a given energy state having N oscillators available. This
sounds reminiscent of " out of N oscillators, how many ways can I arrange them to get the
quantum number n". This problem has already been solved by Albert Einsten in 1907 (Einstein
Solids) and we can refer to his solution to �nding the multiplicity (the degeneracy) of a certain
microstate (eigen energy). The degeneracy/multiplicity for a certain energy level is given by

Ω(N , n) = (
N + n − 1

n ) =
(N + n − 1)!

n!(N + n − 1 − n)!
=
(N + n − 1)!
n!(N − 1)!

[1.24]

Where n is the principal quantum number and N is the number of oscillators.

The way to interpret this is: Given N oscillators in the system, how many ways can I arrange
my energy quanta (b/c energy is discretized) among the di�erent N quantum numbers (n1,
n2,...,nN ) in the system.

We can compare this with the "traditional" method of counting the di�erent combinations for
a 3D oscillator system and compare with (1.22).

n = 0

nx ny nz
0 0 0

Ω(3, 0) =
(3 + 0 − 1)!
0!(2 − 1)!

= 1 [1.25]

n = 1

nx ny nz
1 0 0
0 1 0
0 0 1

Ω(3, 1) =
(3 + 1 − 1)!
1!(2 − 1)!

= 3 [1.26]

n = 2
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nx ny nz
2 0 0
0 2 0
0 0 2
1 1 0
0 1 1
1 0 1

Ω(3, 2) =
(3 + 2 − 1)!
2!(2 − 1)!

= 6 [1.27]

One can continue the counting scheme and see that this multiplicity/degeneracy will hold true
for a system consisting of N oscillators.

2 Exercises
These two problems seemed to be good and cover some helpful stu�.

2.1 HW Problem 2.8
Calculate ⟨0|aaa†aa†a†|0⟩ and ⟨n|a†a†a†a|m⟩.

First let’s look at ⟨0|aaa†aa†a†|0⟩:

Using

a† |n⟩ =
√
n + 1 |n + 1⟩ [2.1]

a |n⟩ =
√
n |n − 1⟩ [2.2]

a†a |n⟩ = n |n⟩ [2.3]

⟨0|aaa†aa†a†|0⟩

= ⟨0|aaa†aa†(1)|1⟩

= ⟨0|aaa†a(
√
2)|2⟩

=
√
2 ⟨0|aaa†(

√
2)|1⟩

= 2 ⟨0|aa(
√
2)|2⟩

= 2
√
2 ⟨0|a(

√
2)|1⟩

= 4 ⟨0|(1)|0⟩

= 4 ⟨0|0⟩

= 4

by the orthonormality of the harmonic oscillator eigenstates.
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This was done using only the �rst two relations; the number operator can be used as well to
reduce the number of steps slightly.

Next we will look at ⟨n|a†a†a†a|m⟩. Using �rst the number operator, we �nd

⟨n|a†a†a†a|m⟩

= ⟨n|a†a†m|m⟩

Then using the creation (raising) operator, we �nd

= ⟨n|a†m
√
m + 1|m + 1⟩

= ⟨n|m
√
m + 1

√
m + 2|m + 2⟩

= m
√
m + 1

√
m + 2�n,m+2

where we again used the orthonormality of harmonic oscillator eigenstates. Thus, if n = m + 2,
it returns m

√
m + 1

√
m + 2, otherwise it is zero.

2.2 HW Problem 2.10
Consider a particle of mass m in a harmonic oscillator with spring constant k = m!2.
(a) Write the momentum and position operators for a particle of massm in a harmonic oscillator
characterized by frequency ! in terms of the creation and destruction operators.
(b) Calculate ⟨n|x2|n⟩and ⟨n|p2|n⟩. Compare the product of these two matrix elements to the
constraint of the uncertainty relation as a function of n.
(c) Show that the expectation value of the potential energy in an energy eigenstate of the
harmonic oscillator equals the expectation value of the kinetic energy in that state.

A valuable skill for solving certain types of problems is to write an operator (such as position
or momentum) in terms of raising and lowering operators, as is demonstrated here.

(a) Starting from the raising and lowering operators,

a† =
√
m!
2~ (x −

ip
m!) , a =

√
m!
2~ (x +

ip
m!) [2.4]

where here and henceforth x and p are the position and momentum operators. By adding
them, we can �nd x :

a† + a =
√
m!
2~

(2x) [2.5]

so we �nd that

x =

√
~

2m!
(a + a†) [2.6]

Similarly, by subtracting a from a†, we �nd

a† − a = −
√

2
m!~

(ip) [2.7]

so that

p = i

√
m!~
2

(a − a†) [2.8]
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(b) squaring x that we found in terms of a and a†,

⟨n|x2|n⟩ =
~

2m!
⟨n|a†a† + a†a + aa† + aa|n⟩ [2.9]

By orthonormality, we can throw out the �rst and last terms, since application of either the
raising operator or the lowering operator twice will leave the state ket in a di�erent state,
which is orthogonal to n. Then we have

~
2m!

⟨n|a†a + aa†|n⟩ =
~

2m!
(n + n + 1) [2.10]

where we used a†a |n⟩ = n |n⟩ and aa† = a†a + 1 from the commutation relation,

∴ ⟨n|X 2|n⟩ =
~

2m!
(2n + 1) [2.11]

Similarly for ⟨n|p2|n⟩, we have

⟨n|p2|n⟩ = −
~m!
2

⟨n|a†a† − a†a − aa† + aa|n⟩ =
~m!
2

⟨n|a†a + aa†|n⟩ [2.12]

so that
⟨n|p2|n⟩ =

~m!
2

(2n + 1) [2.13]

Multiplying the expectation values with one another, we arrive at

⟨n|x2|n⟩ ⟨n|p2|n⟩ =
~m!
2

(2n + 1)
~

2m!
(2n + 1) =

~2

4
(2n + 1)2 [2.14]

From the uncertainty principle, we know that this must be equal to or greater than ~2. We see
that this condition is satis�ed in all cases, since the harmonic oscillator eigenstates n must be
non-negative integers. For the ground state, n = 0, and we are right at the uncertainty limit.

(c) The expectation value of the potential energy is

⟨n|V |n⟩ = ⟨n|
m!2x2

2
|n⟩ =

m!2

2
(

~
2m!

(2n + 1)) =
~!(2n + 1)

4
[2.15]

And the expectation value of the kinetic energy is

⟨n|T |n⟩ = ⟨n|
p2

2m
|n⟩ =

1
2m

(
~m!
2

(2n + 1)) =
~!(2n + 1)

4
[2.16]

Thus we see that ⟨n|T |n⟩ = ⟨n|V |n⟩ = ~!(n+ 12 )
2 , which is half the total energy.
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