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Introduction

The application of Variational Method takes the form of roughly four steps.

Step 1

First one must choose an appropriate normalized trial wave function that takes into account all the
physical properties of the ground state. The trial wave function should scale based on a parameter
a, which will account for various unknown properties, as |ψ0〉 = |ψ0(a)〉. The closer the trial wave
function to the true wave function, the better the estimate of the ground state energy.

Step 2

Once we have a normalized trial wave function, we can calculate the energy, which has the following
expression:

E0(a) =
〈ψ0(a)|Ĥ|ψ0(a)〉
〈ψ0(a)|ψ0(a)〉

(1)

Step 3

Next we minimize E0(a) and solve for a

∂E0(a)

∂a
= 0 (2)

Step 4

Lastly once we have found a0, we plug it back into E0 and thus have found our upper bound for the
ground state energy.

Things to Note

One thing to note is that the ground state energy estimate we find doing the variational method is
greater or equal to the true ground state energy.

Eest ≥ Etrue (3)
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Problem

Use the variational method to estimate the energy of the ground state of a one-dimensional harmonic
oscillator by making use of the following two trial functions:

(a) ψ0(x, a) = Ae−a|x| (b) ψ0(x, a) =
A

(x2 + a)
(c∗) ψ0(x, a) =

A

(1 + ax2)2

where a is a positive real number and where A is the normalization constant.[1]

(a) ψ0(x, a) = Ae−a|x|

First we must find the normalization constant A

〈ψ0|ψ0〉 = A2

∫ 0

−∞
e2axdx+A2

∫ ∞
0

e−2axdx

= 2A2

∫ ∞
0

e−2axdx

=
A2

a
⇒ A =

√
a

(4)

Now lets find the expectation value for the Hamiltonian given our normalized trial wave function

〈ψ0|Ĥ|ψ0〉 =

∫ ∞
−∞

e−a|x|
(
− ~2

2m

d2

dx2
+

1

2
mω2A2x2

)
e−a|x|dx (5)

Lets look at the potential term first

〈ψ0|V (x)|ψ0〉 =
1

2
mω2A2

∫ ∞
−∞

x2e−2a|x|dx

= mω2A2

∫ ∞
0

x2e−2axdx

=
mω2

4a2

(6)

Now lets solve the kinetic term

− ~2

2m
〈ψ0|

d2

dx2
|ψ0〉 = − ~2

2m
A2

∫ ∞
−∞

e−a|x|
d2e−a|x|

dx2
dx

= −~2a2

m
A2

∫ ∞
0

e−2axdx

= −~2a2

2m

(7)

Due to our carelessness this lead to a negative kinetic energy. Thus the correct way to calculate the
kinetic energy term is by doing as such:

− ~2

2m
〈ψ0|

d2

dx2
|ψ0〉 =

~2

2m
A2

∫ ∞
−∞

∣∣∣∣de−a|x|dx

∣∣∣∣2 dx
=

~2a2

2m

(8)
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Adding the kinetic and potential term we get

E0 =
~2a2

2m
+
mω2

4a2
(9)

Then we minimize E0(a) =
〈ψ0(a)|Ĥ|ψ0(a)〉
〈ψ0(a)|ψ0(a)〉

:

∂E0

∂a
= 0

~2a0
m
− mω2

2a30
= 0

⇒ a0 =

√
mw√

2~

(10)

Plugging a0 back into (9):

E0 =
~2mω

2m
√

2~
+
mω2
√

2~
4mw

=
~ω√

2

= 0.707~ω

(11)

(b) ψ0(x, a) =
A

(x2 + a)

For our wavefunction to be normalized

〈ψ0|ψ0〉 = A2

∫ ∞
−∞

1

(a+ x2)2
dx

= A2 π

2a3/2

⇒ A =

(
4a3

π2

)1/4

(12)

The expectation value of the Hamiltonian for this normalized wave function can be found by

〈ψ0(a)|Ĥ|ψ0(a)〉 = A2

∫ ∞
−∞

1

x2 + a

(
− ~2

2m

d2

dx
+

1

2
mω2x2

)
1

x2 + a
dx

= −A
2~2

2m

∫ ∞
−∞

6x2 − 2a

(x2 + a)4
dx+

1

2
mω2A2

∫ ∞
−∞

x2

(x2 + a)2
dx

=
~2

4ma
+

1

2
mω2a

(13)
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Minimizing E0(a) =
〈ψ0(a)|Ĥ|ψ0(a)〉
〈ψ0(a)|ψ0(a)〉

we obtain

∂E(a)

∂a
= 0

⇒− ~2

4ma20
+

1

2
mω = 0

⇒a0 =
~√

2mω

(14)

Plugging the expression for a0 into (13) we obtain

E0 =
~ω√

2

= 0.707~ω
(15)

The reason we found the same estimation for parts (a) and (b) is that the two trial wave function
are connected through a Fourier Transform. Specifically:

F
[

1

t2 + a

]
(x) =

1

2π

∫ ∞
−∞

1

t2 + a
eixtdt = Ae−b|x| (16)

where A =
√

π
2a and b =

√
a. Therefore it is reasonable that the two trial wavefunctions yielded the

same result for the ground state energy.

(c) ψ0(x, a) =
A

(1 + ax2)2

We want to try one more wave function, in order to get a different estimate for the ground state
energy for comparison. Since the true harmonic oscillator ground state wave function is a Gaussian
function, a good educated guess would be to use a Lorentzian function (also known as Cauchy -
Lorentz distribution or Breit - Wigner distribution). The Lorentzian describes a decaying system
over time, since it is the Fourier transform of an exponentially decaying oscillation, and therefore
describes many of the physical attributes of our harmonic oscillator.
As before, we begin by normalizing our wavefunction

〈ψ0|ψ0〉 = A2

∫ ∞
−∞

1

(1 + ax2)4
dx

= A2 5π

16
√
a

(17)

and we obtain the normalization constant:

A =

(
16
√
a

5π

)1/2

(18)

The expectation value of the Hamiltonian for this normalized wave function can be found by

〈ψ0|Ĥ|ψ0〉 = A2

∫ ∞
−∞

1

(1 + ax2)2

(
− ~2

2m

d2

dx
+

1

2
mω2x2

)
1

(1 + ax)2
dx (19)
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Starting from the potential term:

〈ψ0|V (x)|ψ0〉 =
mω2A2

2

∫ ∞
−∞

x2

(1 + ax)4
dx

=
mω2A2

2

( π

16a3/2

)
=
mω2

10a

(20)

Moving on to the kinetic term:

− ~2

2m
〈ψ0|

d2

dx2
|ψ0〉 = − ~2

2m
A2

∫ ∞
−∞

1

(1 + ax2)2
d2

dx2

(
1

(1 + ax2)2

)
dx

= − ~2

2m
A2

[∫ ∞
−∞

24a2x2

(1 + ax2)6
−
∫ ∞
−∞

4a

(1 + ax2)5

]
= − ~2

2m
A2

(
21π
√
a

32
− 35π

√
a

32

)
=

~2

2m
· 16
√
a

5π
· 14π

√
a

32

=
7~2a
10m

(21)

Adding the two terms we obtain:

E0(a) =
7~2a
10m

+
mω2

10a
(22)

Minimizing E0(a) =
〈ψ0(a)|Ĥ|ψ0(a)〉
〈ψ0(a)|ψ0(a)〉

we obtain

∂E(a)

∂a
= 0

⇒ 7~2

10m
− mω2

10a20
= 0

⇒a0 =
mω√

7~

(23)

Plugging the expression for a0 into (22) we obtain

E0 =
7~2

10m

mω√
7~

+
mω2

10

√
7~

mω

=

√
7hw

5
= 0.529~ω

(24)
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Comparison

Trial Wave Function E0 Deviation from E0 = 0.5~ω

ψ1(x, a) = Ae−a|x| 0.707~ω 41.4%

ψ2(x, a) =
A

(x2 + a)
0.707~ω 41.4%

ψ3(x, a) =
A

(1 + ax2)2
0.529~ω 5.8%

Disclaimer

The variational method can also be used to find the approximate values for the energies of the
first few excited states. However, these conditions can be included in the variational problem by
means of Lagrange multipliers, that is, by means of a constrained variational principle. In this way,
we can in principle evaluate any other excited state. However, the variational procedure becomes
increasingly complicated as we deal with higher excited states. As a result, the method is mainly
used to determine the ground state.
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