# Chapter 1: Two Level Systems 

Carissa Myers and Julia Hinds

12/04/2020

## Table of Contents

Background：Pure vs．Mixed Ensembles
Background：Density Matrices
Background：Density Matrices
Example 1
Solution to part a
Solution to part b
Solution to part b continued
Solution to part b continued
Solution to part c
Solution to part c

## Background: Pure vs. Mixed Ensembles

- A pure ensemble is a collection of physical systems such that every member is characterized by the same ket $|\alpha\rangle$
- e.g. $|\alpha\rangle$ describes a state with spin pointing in the positive x-direction
- A mixed ensemble has a fraction of the members with relative population $\omega_{1}$ are characterized by $\left|\alpha_{1}\right\rangle$ and some other fraction with relative population $\omega_{2}$ characterized by $\left|\alpha_{2}\right\rangle$, and so on.
- mixture of pure states

Sakurai, J., \& Napolitano, J. (2017). Modern Quantum Mechanics (2nd ed.).

## Background: Density Matrices

- A density operator, or matrix, $(\rho)$ contains all the physically significant information about the ensemble of interest
- Density matrices are Hermitian.
- A mixed state density matrix can be defined as

$$
\rho=\sum_{i} \omega_{i}\left|\alpha_{i}\right\rangle\left\langle\alpha_{i}\right|
$$

where they must satisfy the condition $\operatorname{tr}(\rho)=1$ and can contain any eigenvalues
e.g., after diagonalization, the matrix may look like:

$$
\rho=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & .3 & 0 & 0 \\
0 & 0 & .7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Sakurai, J., \& Napolitano, J. (2017). Modern Quantum Mechanics (2nd ed.).

## Background: Density Matrices

- A pure state density matrix can be defined as

$$
\rho=\left|\alpha_{n}\right\rangle\left\langle\alpha_{n}\right|
$$

where $\omega_{i}$ equals 1 for $\left|\alpha_{i}\right\rangle$, and equals zero for all other state kets $(\mathrm{n}=\mathrm{i})$.

- Satisfies conditions:

$$
\rho^{2}=\rho \text { (projection operator) } ; \operatorname{tr}(\rho)=1
$$

- The eigenvalues are either 0 or 1
i.e., after diagonalization, the matrix may look like:

$$
\rho=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

## Example 1: Density matrices (from Final Exam Fall 1998)

Consider a spin $1 / 2$ system. The projection operator $P_{z}$ projects the component of the wave function that has positive spin along the z-axis.

$$
\langle\eta| P_{z}|\eta\rangle=|\langle z, \uparrow \mid \eta\rangle|^{2}
$$

a) Express $P_{z}$ as a matrix in the basis where $\binom{1}{0}$ denotes a state with positive spin along the $z$-axis.
b) Write down the density matrix for a state that is an incoherent mixture of $50 \%$ positive spin along the $y$-axis and $50 \%$ negative spin along the $y$-axis.
c) If the Hamiltonian is defined as:

$$
\mathcal{H}=\alpha+\beta \sigma_{x}
$$

Calculate the expectation of $\mathcal{H}$ for the state described in b .

## Solution to Part a

a) Express $P_{z}$ as a matrix in the basis where $\binom{1}{0}$ denotes a state with positive spin along the $z$-axis.

To do this, we can find the density matrix for the projection operator starting with the initial state given

Initial state or basis: $|z, \uparrow\rangle=\binom{1}{0}$ and $\langle z, \uparrow|=\left(\begin{array}{ll}1 & 0\end{array}\right)$
Density matrix: $\rho_{z}=|z, \uparrow\rangle\langle z, \uparrow|=\binom{1}{0}\left(\begin{array}{ll}1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
Here, we recognize a projection operator is a density matrix of a pure state.

## Solution to part b

b) Write down the density matrix for a state that is an incoherent mixture of $50 \%$ positive spin along the $y$-axis and $50 \%$ negative spin along the $y$-axis.

First, find the states: $|y, \uparrow\rangle$ and $|y, \downarrow\rangle$. Recognize these states are the eigenvectors of $\sigma_{y}$.

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Therefore,

$$
\begin{aligned}
& |y, \uparrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{i} \\
& |y, \downarrow\rangle=\frac{1}{\sqrt{2}}\binom{1}{-i}
\end{aligned}
$$

## Solution to part b continued

b) From here, there is a $50 \%$ chance of being in either $|y, \uparrow\rangle$ or $|y, \downarrow\rangle$. You superimpose density matrix of $|y, \uparrow\rangle$ and the density matrix $|y, \downarrow\rangle$ to get the density matrix for this mixed state.

$$
\begin{gathered}
\rho=\frac{1}{2}|y, \uparrow\rangle\langle y, \uparrow|+\frac{1}{2}|y, \downarrow\rangle\langle y, \downarrow| \\
\rho=\frac{1}{2} * \frac{1}{2}\binom{1}{i}\left(\begin{array}{ll}
1 & i
\end{array}\right)+\frac{1}{2} * \frac{1}{2}\binom{1}{-i}\left(\begin{array}{ll}
1 & -i
\end{array}\right) \\
\rho=\frac{1}{4}\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{cc}
1 & -i \\
-i & -1
\end{array}\right) \\
\rho=\frac{1}{4}\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
\end{gathered}
$$

Is there a mistake?

## Solution to part b continued

b) Yes, we know there is a mistake because trace must equal 1. Previous solution was wrong because the complex conjugate was NOT done when calculating the bras.

$$
\begin{gathered}
\rho=\frac{1}{2}|y, \uparrow\rangle\langle y, \uparrow|+\frac{1}{2}|y, \downarrow\rangle\langle y, \downarrow| \\
\rho=\frac{1}{2} * \frac{1}{2}\binom{1}{-i}\left(\begin{array}{ll}
1 & i
\end{array}\right)+\frac{1}{2} * \frac{1}{2}\binom{1}{i}\left(\begin{array}{ll}
1 & -i
\end{array}\right) \\
\rho=\frac{1}{4}\left(\begin{array}{cc}
1 & i \\
-i & 1
\end{array}\right)+\frac{1}{4}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right) \\
\rho=\frac{1}{4}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)
\end{gathered}
$$

## Solution to part c

c) If the Hamiltonian is defined as:

$$
\mathcal{H}=\alpha+\beta \sigma_{x}
$$

Calculate the expectation of $\mathcal{H}$ for the state described in $b$.

$$
\begin{gathered}
\mathcal{H}=\alpha\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\beta\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right) \\
\langle\mathcal{H}\rangle=\frac{1}{2}\langle y, \uparrow| \mathcal{H}|y, \uparrow\rangle+\frac{1}{2}\langle y, \downarrow| \mathcal{H}|y, \downarrow\rangle \\
\langle\mathcal{H}\rangle=\frac{1}{2} \frac{1}{2}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\binom{1}{i}+\frac{1}{2} \frac{1}{2}\left(\begin{array}{ll}
1 & i
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\binom{1}{-i} \\
\langle\mathcal{H}\rangle=\frac{1}{4}\left(\begin{array}{ll}
1 & -i
\end{array}\right)\binom{\alpha+\beta i}{\beta+\alpha i}+\frac{1}{4}\left(\begin{array}{ll}
1 & i
\end{array}\right)\binom{\alpha-i \beta}{\beta-i \alpha} \\
\langle\mathcal{H}\rangle=\frac{1}{4} 2 \alpha+\frac{1}{4} 2 \alpha \\
\langle\mathcal{H}\rangle=\alpha
\end{gathered}
$$

## Solution to part c - Second Method

c) This problem can also be done a second way

$$
\begin{gathered}
\langle\mathcal{H}\rangle=\operatorname{tr}(\rho \mathcal{H}) \\
\langle\mathcal{H}\rangle=\operatorname{tr}\left(\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \alpha
\end{array}\right)\right) \\
\langle\mathcal{H}\rangle=\operatorname{tr}\left(\left(\begin{array}{ll}
\frac{\alpha}{2} & \frac{\beta}{2} \\
\frac{\beta}{2} & \frac{\alpha}{2}
\end{array}\right)\right) \\
\langle\mathcal{H}\rangle=\alpha
\end{gathered}
$$

Thank you!

