Fermi's Golden Rule

Jared Dechant, Samuel Sottile

Mary and Bob in an infinite square well
A bob particle ψ_{b} is in the ground state of a one dimensional infinite potential well of length a,

$$
V_{0}= \begin{cases}0 & \text { if } 0<x<a \\ \infty & \text { else }\end{cases}
$$

A perturbation is added that allows a bob particle to undergo a transformation into a mary particle ψ_{m}. The mary particle does not feel the effects of the square well potential. The bob and mary particles have the same mass m. The perturbation is of the form,

$$
V_{b m}=\left\langle\psi_{m}\right| V_{b m}\left|\psi_{b}\right\rangle=g \int d x \psi_{b}^{*}(x) \partial_{x} \psi_{m}(x)
$$

where g is the interaction strength between the two particles.
Calculate the rate of transition between a bob and mary particle.

Solution

The ground state wave-function ψ_{b} of an asymmetric 1D infinite potential well and the free particle wave-function ψ_{m} are of the form:

$$
\begin{aligned}
\psi_{b}(x) & =\sqrt{\frac{2}{a}} \sin \frac{\pi}{a} x \\
\psi_{m}(x) & =\frac{1}{\sqrt{L}} e^{i k x}
\end{aligned}
$$

with corresponding energies E_{b} and E_{m}

$$
\begin{aligned}
E_{b} & =\frac{\hbar^{2} \pi^{2}}{2 m a^{2}} \\
E_{m} & =\frac{\hbar^{2} k^{2}}{2 m}
\end{aligned}
$$

Thus the interaction $V_{b m}$ can be calculated as

$$
\begin{aligned}
V_{b m} & =g \int d x \psi_{b}^{*}(x) \partial_{x} \psi_{m}(x) \\
& =\sqrt{\frac{2}{L a}} g(i k) \int_{0}^{a} d x \sin \frac{\pi}{a} x e^{i k x} \\
& =\sqrt{\frac{2}{L a}} g(i k) \int_{0}^{a} d x \frac{1}{2 i}\left(e^{i(\pi+k a) x / a}-e^{i(\pi-k a) x / a}\right) \\
& =\sqrt{\frac{2}{L a}} g(i k) \frac{\pi a\left(1+e^{i a k}\right)}{\pi^{2}-a^{2} k^{2}}
\end{aligned}
$$

Now we will calculate the transition rate using Fermi's Golden Rule. Recall

$$
R_{i \rightarrow n}=\frac{2 \pi}{\hbar}\left|V_{n i}\right|^{2} \delta\left(\epsilon_{n}-\epsilon_{i}\right)
$$

So

$$
\begin{aligned}
R_{b \rightarrow m} & =\frac{2 \pi}{\hbar}\left|V_{b m}\right|^{2} \delta\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\right) \\
& =\frac{2 \pi}{\hbar} \frac{\pi^{2} a^{2}}{\left(\pi^{2}-a^{2} k^{2}\right)^{2}}(2+2 \cos a k) \frac{2}{L a} g^{2} k^{2} \frac{2 m}{\hbar^{2}} \delta\left(k^{2}-\frac{\pi^{2}}{a^{2}}\right) \\
& =\frac{16 m \pi^{3} a g^{2} k^{2}(1+\cos a k) \delta\left(k^{2}-\frac{\pi^{2}}{a^{2}}\right)}{\hbar^{3} L\left(\pi^{2}-a^{2} k^{2}\right)^{2}}
\end{aligned}
$$

where we used the identity

$$
\delta(\alpha x)=\frac{1}{\alpha} \delta(x) .
$$

Also, note the other delta function identity:

$$
\delta\left(x^{2}-\alpha^{2}\right)=\frac{1}{2 \alpha}[\delta(x-\alpha)+\delta(x+\alpha)]
$$

Integrating over all momentum states:

$$
\begin{aligned}
R & =\frac{16 m \pi^{3} g^{2} a}{\hbar^{3} L} \int \frac{L}{2 \pi} d k \frac{k^{2}}{\left(\pi^{2}-a^{2} k^{2}\right)^{2}}(1+\cos a k) \delta\left(k^{2}-\frac{\pi^{2}}{a^{2}}\right) \\
& =\frac{16 m \pi^{3} g^{2} a}{\hbar^{3} L} \int \frac{L}{2 \pi} d k \frac{k^{2}}{\left(\pi^{2}-a^{2} k^{2}\right)^{2}}(1+\cos a k) \frac{a}{2 \pi}\left(\delta\left(k-\frac{\pi}{a}\right)+\delta\left(k+\frac{\pi}{a}\right)\right) \\
& =\frac{8 m \pi^{2} g^{2} a}{\hbar^{3}}(2) \frac{a}{2 \pi} \frac{\pi^{2} / a^{2}}{8 \pi^{2}}
\end{aligned}
$$

The factor of 2 comes from the fact that the delta function is non zero when $k= \pm \frac{\pi^{2}}{a^{2}}$ (everything else only depends on $|k|$). Also note that the $\frac{1}{8 \pi^{2}}$ comes from the limit

$$
\lim _{t \rightarrow \pi} \frac{1+\cos (t)}{\left(\pi^{2}-t^{2}\right)^{2}}=\frac{1}{8 \pi^{2}}
$$

So, simplifying, we get

$$
R=\frac{m \pi g^{2}}{\hbar^{3}}
$$

The units work out as g is in units of Jm and \hbar has units of Js. Interestingly, the rate is independent of the width of the potential well.

